A. | -6 | B. | -1 | C. | 1 | D. | 6 |
分析 先作出不等式組的可行域,利用目標函數(shù)z=x-2y的最大值為-2,求出交點坐標,代入3x-y-a=0即可.
解答 解:先作出約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{2x+y-a≥0}\\{y-2≤0}\end{array}\right.$的可行域如圖,
∵目標函數(shù)z=2x-y的最大值為:-2,
由圖象知z=2x-y經(jīng)過平面區(qū)域的A,時目標函數(shù)取得最大值-2.
由$\left\{\begin{array}{l}{2x-y=-2}\\{x-y+1=0}\end{array}\right.$,解得A(0,1),
同時A(0,1)也在直線2x+y-a=0上,
∴1-a=0,
則a=1,
故選:C.
點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結合以及目標函數(shù)的意義是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1 | B. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1 | C. | $\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1 | D. | $\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com