已知橢圓G的中心在坐標(biāo)原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為       __
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,橢圓上的點到焦點的距離為2,的中點,則為坐標(biāo)原點)的值為
A.8B.2C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(.(本小題滿分12分)
如圖,焦距為2的橢圓E的兩個頂點分別為,且共線.
(Ⅰ)求橢圓E的標(biāo)準方程;
(Ⅱ)若直線與橢圓E有兩個不同的交點PQ,且原點O總在以PQ為直徑的圓的內(nèi)部,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點為橢圓上的一點,已知,則的面積為(  )  
A.12 B.9C.8 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=一x與橢圓C: =1(a>b>0)交于A、B兩點,以線段AB為直徑的圓恰好經(jīng)過橢圓的右焦點,則橢圓C的離心率為.
A.       B.         C.         D.4-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,離心率,A為右頂點,K為右準線與X軸的交點,且.
(I)求橢圓的標(biāo)準方程;
(II)設(shè)橢圓的上頂點為B,問是否存在直線l,使直線l交橢圓于C,D兩點,且橢圓的左焦點巧恰為ΔBCD的垂心?若存在,求出l的方程r若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求的最大值和最小值;
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且∠為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的一動點,且與橢圓長軸兩頂點連線的斜率之積為,則橢圓離心率為 (    )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓的兩焦點為F1),F2(1,0),直線x = 4是橢圓的一條準線.
(1)求橢圓方程;
(2)設(shè)點P在橢圓上,且,求cos∠F1PF2的值;
(3)設(shè)P是橢圓內(nèi)一點,在橢圓上求一點Q,使得最小.

查看答案和解析>>

同步練習(xí)冊答案