【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱5kg).某采購商打算采購一批橙子銷往省外,并從采購的這批橙子中隨機抽取100箱,利用橙子的等級分類標準得到的數(shù)據(jù)如下表:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
箱數(shù) | 40 | 30 | 10 | 20 |
售價(元/kg) | 36 | 30 | 24 | 18 |
(1)試計算樣本中的100箱不同等級橙子的平均價格;
(2)按照分層抽樣的方法,從這100個樣本中抽取10箱,試計算各等級抽到的箱數(shù);
(3)若在(2)抽取的特級品和一級品的箱子上均編上號放在一起再從中抽取2箱,求抽取的2箱中兩種等級均有的概率
【答案】(1)(元)(2)各等級抽到的箱數(shù)分別為4,3,1,2(3)
【解析】
(1)將每種價格與對應(yīng)的頻率相乘,再求和即可得不同等級橙子的平均價格;(2)利用分層抽樣的概念即可得結(jié)果;(3)利用列舉法可得從中抽取2箱則一共有10種抽法,“抽取的2箱中兩種等級均有”包含6個基本事件,故而可得其概率.
解:(1)依題意可知,樣本中的100箱不同等級橙子的平均價格為
.
(2)各等級抽到的箱數(shù)分別為,,,,
即4,3,1,2.
(3)由(2)知特級3箱編號為,,;一級2箱編號為,共5箱,
從中抽取2箱則一共有10種抽法,樣本空間為,
滿足條件的基本事件為共6種,
設(shè)“抽取的2箱中兩種等級均有”為事件,
則
所以抽取的2箱中兩種等級均有的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點為,底面圓心為,半徑為.
(1)設(shè)圓錐的母線長為,求圓錐的體積;
(2)設(shè),、是底面半徑,且,為線段的中點,如圖.求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本題滿分14分)
在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達式,并加以證明;
(Ⅱ) 設(shè),求證:對任意的自然數(shù),都有;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為4.
(1)求橢圓C的標準方程.
(2)設(shè)直線l過點(2,0)且與橢圓C相交于不同的兩點A、B,直線與x軸交于點D,E是直線上異于D的任意一點,當時,直線BE是否恒過x軸上的定點?若過,求出定點坐標,若不過,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為,點分別為棱的中點,下列結(jié)論中,其中正確的個數(shù)是( )
①過三點作正方體的截面,所得截面為正六邊形;
②/平面;
③;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標原點).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com