【題目】如圖,在平面直角坐標系xOy中,F為x軸正半軸上的一個動點.以F為焦點、O為頂點作拋物線C.設P為第一象限內拋物線C上的一點,Q為x軸負半軸上一點,使得PQ為拋物線C的切線,且.圓C1、C2均與直線OP切于點P,且均與x軸相切.求點F的坐標,使圓C1與C2的面積之和取到最小值,
科目:高中數學 來源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現擬在此江邊用圍網建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網依托岸邊線圍成三角形(,兩邊為圍網);方案2:在岸邊,上分別取點,用長度為的圍網依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1,F2,離心率,且橢圓的短軸長為2.
(1)求橢圓的標準方程;
(2)已知直線l1,l2過右焦點F2,且它們的斜率乘積為﹣1,設l1,l2分別與橢圓交于點A,B和C,D.①求AB+CD的值;②設AB的中點M,CD的中點為N,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某次考試中500名學生的物理(滿分為150分)成績服從正態(tài)分布,數學成績的頻率分布直方圖如圖所示.
(Ⅰ)如果成績大于135分為特別優(yōu)秀,那么本次考試中的物理、數學特別優(yōu)秀的大約各有多少人?
(Ⅱ)如果物理和數學兩科都特別優(yōu)秀的共有4人,是否有99.9%的把握認為物理特別優(yōu)秀的學生,數學也特別優(yōu)秀?
附:①若,則
②表及公式:
0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.
(1)當a=2時,求證:AO⊥平面BCD.
(2)當二面角A-BD-C的大小為120°時,求二面角A-BC-D的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推進“千村百鎮(zhèn)計劃”,2019年4月某新能源公司開展“電動綠色出行”活動,首批投放200臺型新能源車到某地多個村鎮(zhèn),供當地村民免費試用三個月.試用到期后,為了解男女試用者對型新能源車性能的評價情況,該公司要求每位試用者填寫一份性能綜合評分表(滿分為100分).最后該公司共收回有效評分表600份,現從中隨機抽取40份(其中男、女的評分表各20份)作為樣本,經統(tǒng)計得到莖葉圖:
(1)求40個樣本數據的中位數;
(2)已知40個樣本數據的平均數,記與的最大值為.該公司規(guī)定樣本中試用者的“認定類型”:評分不小于的為“滿意型”,評分小于的為“需改進型”.
①請以40個樣本數據的頻率分布來估計收回的600份評分表中,評分小于的份數;
②請根據40個樣本數據,完成下面2×2列聯表:
認定類型 性別 | 滿意型 | 需改進型 | 合計 |
女性 | 20 | ||
男性 | 20 | ||
合計 | 40 |
根據2×2列聯表判斷能否有99%的把握認為“認定類型”與性別有關?
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義域為的奇函數,當.
(Ⅰ)求出函數在上的解析式;
(Ⅱ)在答題卷上畫出函數的圖象,并根據圖象寫出的單調區(qū)間;
(Ⅲ)若關于的方程有三個不同的解,求的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com