【題目】甲、乙兩地相距,汽車(chē)從甲地勻速行駛到乙地,速度不超過(guò).已知汽車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為.

1)把全程運(yùn)輸成本(元)表示為速度的函數(shù),并求出當(dāng)時(shí),汽車(chē)應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;

2)隨著汽車(chē)的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng)元,此時(shí)汽車(chē)的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小.

【答案】1;

2;

【解析】

1)根據(jù)題意知,代入利用均值不等式得到答案.

2,求導(dǎo)得到在上是減函數(shù),代入數(shù)據(jù)計(jì)算得到答案.

1)由題意可知,汽車(chē)從甲地到乙地所用時(shí)間為小時(shí),

全程成本為.

當(dāng),時(shí),

當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以,汽車(chē)應(yīng)以的速度行駛,能使得全程運(yùn)輸成本最小;

2)當(dāng),時(shí),,.

,

得,,

所以上是減函數(shù),

所以,汽車(chē)應(yīng)以的速度行駛,才能使得全程運(yùn)輸成本最小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)經(jīng)過(guò)點(diǎn).

1)求拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程;

2)設(shè)為原點(diǎn),過(guò)拋物線(xiàn)的焦點(diǎn)作斜率不為0的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),直線(xiàn)分別交直線(xiàn)于點(diǎn)和點(diǎn).求證:以為直徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿(mǎn)分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的眾數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是的中點(diǎn).

)求異面直線(xiàn)所成角的余弦值.

)在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相切,設(shè)第一象限的切點(diǎn)為.

(1)求點(diǎn)的坐標(biāo);

(2)若過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),圓是以線(xiàn)段為直徑的圓過(guò)點(diǎn),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)上異于頂點(diǎn)的任意一點(diǎn),過(guò)的直線(xiàn)于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

1)求的方程;

2)若直線(xiàn),且相切于點(diǎn),試問(wèn)直線(xiàn)是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù).

I)若,求實(shí)數(shù)的取值范圍;

II)當(dāng)時(shí),討論方程上的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是( )

A. 為真命題,則為真命題 B. 恒成立

C. 命題“”的否定是“ D. 命題“若”的逆否命題是“若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)的焦點(diǎn)是.問(wèn):是否存在內(nèi)接等腰直角三角形,該三角形的一條直角邊過(guò)點(diǎn)?如果存在,存在幾個(gè)?如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案