函數(shù)y=x2+1的極值點為( )
A.-2
B.0
C.1
D.2
【答案】分析:根據(jù)所給的函數(shù),對函數(shù)求導(dǎo),使得導(dǎo)函數(shù)等于0,求出對應(yīng)的x的值,這里不用檢驗,極值點一定存在.
解答:解:∵函數(shù)y=x2+1,
∴y=2x
令函數(shù)的導(dǎo)函數(shù)等于0,
得到x=0,
即函數(shù)的極值點是0,
故選B.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,本題解題的關(guān)鍵是求出函數(shù)的導(dǎo)數(shù),使得導(dǎo)函數(shù)等于0,求出結(jié)果,要檢驗點的兩端的導(dǎo)函數(shù)的符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+(2m+1)x+m2-1(m∈R).

(1)m為何值時,y的極小值是0?

(2)求證:不論m是什么數(shù)值,函數(shù)的圖象(即拋物線)的頂點都在同一條直線l1上.

(3)平行于l1的直線中,哪些與拋物線相交,哪些不相交?求證:任一條平行于l1而與拋物線相交的直線,被各拋物線截出的線段都相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省福州三中高三練習(xí)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是;
(I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+(2m+1)x+m2-1(m∈R).

(1)m為何值時,y的極小值是0?

(2)求證:不論m是什么數(shù)值,函數(shù)的圖象(即拋物線)的頂點都在同一條直線l1上.

(3)平行于l1的直線中,哪些與拋物線相交,哪些不相交?求證:任一條平行于l1而與拋物線相交的直線,被各拋物線截出的線段都相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+(2m+1)xm2-1(mR).

(1)m為何值時,y的極小值是0?

(2)求證:不論m是什么數(shù)值,函數(shù)的圖象(即拋物線)的頂點都在同一條直線l1上.

(3)平行于l1的直線中,哪些與拋物線相交,哪些不相交?求證:任一條平行于l1而與拋物線相交的直線,被各拋物線截出的線段都相等.

查看答案和解析>>

同步練習(xí)冊答案