定義在(0,+∞)上的函數(shù)f(x)滿足 f(2x)=2f(x),當(dāng)x∈[1,2)時,f(x)=x2,則 f(10)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中函數(shù)f(x)滿足 f(2x)=2f(x),可得f(10)=2 f(5)=4f(
5
2
)=8f(
5
4
),結(jié)合當(dāng)x∈[1,2)時,f(x)=x2,可得答案.
解答: 解:∵當(dāng)x∈[1,2)時,f(x)=x2,
∴f(
5
4
)=
25
16
,
又∵函數(shù)f(x)滿足 f(2x)=2f(x),
∴f(10)=2 f(5)=4f(
5
2
)=8f(
5
4
)=
25
2
,
故答案為:
25
2
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)的值,其中根據(jù)分析出f(10)=2 f(5)=4f(
5
2
)=8f(
5
4
),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-3,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|f(x)-f(y)≥0}.
(1)求集合M∩N對應(yīng)區(qū)域的面積;
(2)若點(diǎn)P(a,b)∈M∩N,求
b+1
a-9
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b是奇函數(shù)”.則函數(shù)f(x)=x3+3x2-x-2圖象的對稱中心坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級在5月份進(jìn)行一次高考模擬考試,考生的總分成績分布情況如表所示:
 [0,400)[400,480)[480,550)[550,750]
文科考生8014512040
理科考生70255xy
已知該校考生中,成績在[400,550)中的人數(shù)為700,且不低于480分的文科、理科考生人數(shù)之比為2:3.
(Ⅰ)求x,y的值;
(Ⅱ)若按文、理科用分層抽樣方法在不低于550分的考生中隨機(jī)抽取5名考生進(jìn)行質(zhì)量分析,并請這5名同學(xué)中的3名同學(xué)進(jìn)行方法介紹,求文、理科考生都有的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
ax3-ax2
+(2a-3)x+1在R上存在極值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=4.
(1)求過點(diǎn)P(1,2)且與圓O相切的直線l的方程;
(2)直線m過點(diǎn)P(1,2),且與圓O交于A、B兩點(diǎn),若|AB|=2
3
,求直線m的方程;
(3)圓O上有一動點(diǎn)M(x0,y0),
ON
=(2x0y0)
,若向量
OQ
=2
OM
+
1
2
ON
,求動點(diǎn)Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈[
2
,16],求f(x)=(log2x)2-3log2x+2的最值為
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3+2x-x2
的定義域?yàn)锳,集合B={x|(x-m-3)(x-m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實(shí)數(shù)m的值;
(3)若C?∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{1,2,3,4,5}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量
α
=(a,b).從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個數(shù)為n,其中面積等于2的平行四邊形的個數(shù)為m,則
m
n
=(  )
A、
2
15
B、
1
5
C、
4
15
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案