已知數(shù)列{an}的前n項(xiàng)和Sn,若an+1-an=2,且a2+a8=a4,則S9=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)an+1-an=2,得出{an}是公差為2的等差數(shù)列,從而求出a1的值,即得S9的值.
解答: 解:數(shù)列{an}中,∵an+1-an=2,
∴{an}是公差為2的等差數(shù)列,
又∵a2+a8=a4,
∴(a1+2)+(a1+2×7)=a1+2×3,
解得a1=-10;
∴S9=9×(-10)+
9×8×2
2
=-18.
故答案為:-18.
點(diǎn)評(píng):本題考查了等差函數(shù)的定義、通項(xiàng)公式以及前n項(xiàng)和公式的應(yīng)用問題,解題時(shí)應(yīng)熟練地掌握等差數(shù)列的有過(guò)知識(shí),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知△ABC是等邊三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、DB在平面ABC的同側(cè),M為EA的中點(diǎn),CE=2BD.
(Ⅰ)求證:MD∥面ABC;
(Ⅱ)求證:平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列an的公比為q>1,又a172=a24,求使a1+a2+…+an
1
a1
+
1
a2
+
1
a3
+…+
1
an
成立的自然數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:xy=1,現(xiàn)將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,求所得曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)棱錐的底面是正多邊形,并且頂點(diǎn)在底面的射影是底面的中心,這樣的棱錐叫做正棱錐.已知一個(gè)正六棱錐的各個(gè)頂點(diǎn)都在半徑為3的球面上,則該正六棱錐的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓(x+1)2+y2=9關(guān)于直線x-y=0對(duì)稱的圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+1,x≤1
2x,x>1
,若f(m)=4,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足3a4=a52,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的頂點(diǎn)都在半徑為R的球面上,底面ABCD是正方形,且底面ABCD經(jīng)過(guò)球心O,E是AB的中點(diǎn),PE⊥底面ABCD,則該四棱錐P-ABCD的體積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案