【題目】某小區(qū)所有263戶(hù)家庭人口數(shù)分組表示如下:
家庭人口數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
家庭數(shù) | 20 | 29 | 48 | 50 | 46 | 36 | 19 | 8 | 4 | 3 |
(1)若將上述家庭人口數(shù)的263個(gè)數(shù)據(jù)分布記作,平均值記作,寫(xiě)出人口數(shù)方差的計(jì)算公式(只要計(jì)算公式,不必計(jì)算結(jié)果);
(2)寫(xiě)出他們家庭人口數(shù)的中位數(shù)(直接給出結(jié)果即可);
(3)計(jì)算家庭人口數(shù)的平均數(shù)與標(biāo)準(zhǔn)差.(寫(xiě)出公式,再利用計(jì)算器計(jì)算,精確到0.01)
【答案】(1);(2);(3)平均數(shù)4.30人,方差
【解析】
(1)根據(jù)方差的計(jì)算公式可得結(jié)果;
(2)根據(jù)中位數(shù)的概念可得結(jié)果;
(3)根據(jù)平均數(shù)與標(biāo)準(zhǔn)差的公式計(jì)算即可.
解:(1)由方差的計(jì)算公式得:
人口數(shù)方差為;
(2)263戶(hù)家庭,則中位數(shù)為第戶(hù)家庭的人口數(shù),
,,
所以中位數(shù)為4;
(3)平均數(shù):
,
標(biāo)準(zhǔn)差:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2=(注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫(xiě)出定義域;
(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,左焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線(xiàn)交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)在軸上,是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線(xiàn)的焦點(diǎn), 到拋物線(xiàn)的準(zhǔn)線(xiàn)的距離為.
(I)求橢圓的方程和拋物線(xiàn)的方程;
(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱(chēng),直線(xiàn)與橢圓相交于點(diǎn)(異于點(diǎn)),直線(xiàn)與軸相交于點(diǎn).若的面積為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓及直線(xiàn):.
(1)證明:不論取什么實(shí)數(shù),直線(xiàn)與圓C總相交;
(2)求直線(xiàn)被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形中,、分、所成的比為,即,則有:.
(1)拓展到空間,寫(xiě)出空間四邊形類(lèi)似的命題,并加以證明;
(2)在長(zhǎng)方體中,,,,、分別為、的中點(diǎn),利用上述(1)的結(jié)論求線(xiàn)段的長(zhǎng)度;
(3)在所有棱長(zhǎng)均為平行六面體中,(為銳角定值),、分、所成的比為,求的長(zhǎng)度.(用,,表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年國(guó)際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看籃球世界杯賽事的情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(1)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問(wèn)卷調(diào)查的120名學(xué)生中,采用按性別分層抽樣的方法選取6人參加2019年國(guó)際籃聯(lián)籃球世界杯賽志愿者宣傳活動(dòng).
(i)求男、女學(xué)生各選取多少人;
(ii)若從這6人中隨機(jī)選取3人到校廣播站開(kāi)展2019年國(guó)際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在極坐標(biāo)系中,為極點(diǎn),點(diǎn),點(diǎn).
(1)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,求經(jīng)過(guò),,三點(diǎn)的圓的直角坐標(biāo)方程;
(2)在(1)的條件下,圓的極坐標(biāo)方程為,若圓與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線(xiàn)的參數(shù)方程為(t為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)關(guān)于對(duì)稱(chēng).
(1)求極坐標(biāo)方程,直角坐標(biāo)方程;
(2)將向左平移4個(gè)單位長(zhǎng)度,按照變換得到與兩坐標(biāo)軸交于兩點(diǎn),為上任一點(diǎn),求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com