【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線關(guān)于對(duì)稱(chēng).

(1)求極坐標(biāo)方程,直角坐標(biāo)方程;

(2)將向左平移4個(gè)單位長(zhǎng)度,按照變換得到與兩坐標(biāo)軸交于兩點(diǎn),上任一點(diǎn),求的面積的最大值.

【答案】(1),;(2).

【解析】

(1)消整理,即可得到的普通方程,利用即可得極坐標(biāo)方程,利用得到,利用曲線關(guān)于對(duì)稱(chēng)即可求得,即可求得直角坐標(biāo)方程。

(2)求出的方程,,求出,利用參數(shù)方程可設(shè),表示出點(diǎn)P到直線的距離,利用輔助角公式即可求得的距離的最大值,問(wèn)題得解。

解:(1)(t為參數(shù)),消去,得.

,代入得:.

.

化為:,又關(guān)于對(duì)稱(chēng),

,∴,∴.

(2)向左平移4個(gè)單位長(zhǎng)度得:,按

變換后得:.

,∴令,,∴.

易得:,設(shè)的距離為.

.

當(dāng)時(shí),有最大值.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)方格表中的小方格進(jìn)行染色.使得每個(gè)被染色的小方格滿(mǎn)足:與其相鄰的小方格中最多只有一個(gè)被染色,其中兩個(gè)小方格相鄰是指它們有一條公共邊.問(wèn):最多可以給多少個(gè)小方格染色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

)當(dāng)時(shí),判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,,,四邊形是菱形,.

(Ⅰ)求證:;

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的展開(kāi)式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開(kāi)式的各項(xiàng)系數(shù)之和為1024,則下列說(shuō)法正確的是(

A.展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256

B.展開(kāi)式中第6項(xiàng)的系數(shù)最大

C.展開(kāi)式中存在常數(shù)項(xiàng)

D.展開(kāi)式中含項(xiàng)的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的極值點(diǎn)個(gè)數(shù);

(2)若,證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿(mǎn)足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線交橢圓兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案