【題目】【2018四川南充高三第二次(3月)高考適應(yīng)性考試某校開展翻轉(zhuǎn)合作學(xué)習(xí)法教學(xué)試驗(yàn),經(jīng)過一年的實(shí)踐后,對翻轉(zhuǎn)班對照班的全部220名學(xué)生的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行測試,按照大于或等于120分為成績優(yōu)秀”,120分以下為成績一般統(tǒng)計(jì),得到如下的列聯(lián)表:

成績優(yōu)秀

成績一般

合計(jì)

對照班

20

90

110

翻轉(zhuǎn)班

40

70

110

合計(jì)

60

160

220

(I)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認(rèn)為成績優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法有關(guān);

(II)為了交流學(xué)習(xí)方法,從這次測試數(shù)學(xué)成績優(yōu)秀的學(xué)生中,用分層抽樣方法抽出6名學(xué)生,再從這6名學(xué)生中抽3名出來交流學(xué)習(xí)方法,求至少抽到1對照班學(xué)生交流的概率.

附表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(I)不能認(rèn)為成績優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法有關(guān);(II)

【解析】試題分析:(Ⅰ)根據(jù)公式,求得的值,再根據(jù)附表,即可作出判斷,得到結(jié)論;

(Ⅱ)由分層抽樣可知:在這 6 名學(xué)生中,設(shè)“對照班”的兩名學(xué)生分別為,“翻轉(zhuǎn)班”的 4 名學(xué)生分別為,列出基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求得概率.

試題解析:

(1)

所以,在犯錯誤的概率不超過 0.001 的前提下,不能認(rèn)為“成績優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法”有關(guān).

(2)設(shè)從“對照班”中抽取人,從“翻轉(zhuǎn)班”中抽取人,由分層抽樣可知:在這 6 名學(xué)生中,設(shè)“對照班”的兩名學(xué)生分別為,“翻轉(zhuǎn)班”的 4 名學(xué)生分別為,則所有抽樣情況如下:

,共 20 種.

其中至少有一名“對照班”學(xué)生的情況有 16 種,

記事件為至少抽到 1 名“對照班”學(xué)生交流,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了歲到歲之間的位網(wǎng)上購物者的年齡分布情況,并將所得數(shù)據(jù)按照,,分成組,繪制成頻率分布直方圖(如圖).

(1)求頻率分布直方圖中實(shí)數(shù)的值及這位網(wǎng)上購物者中年齡在內(nèi)的人數(shù);

(2)現(xiàn)采用分層抽樣的方法從參與調(diào)查的位網(wǎng)上購物者中隨機(jī)抽取人,再從這人中任選人,設(shè)這人中年齡在內(nèi)的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱臺被過點(diǎn)的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,,平面,.

(Ⅰ)求證:平面平面;

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動點(diǎn).

(1)求拋物線的方程及其準(zhǔn)線方程;

(2)過點(diǎn)作拋物線的兩條切線,、分別為兩個切點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,,底面,且,,的中點(diǎn),上,且.

1)求證:平面平面;

2)求證:平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個,求實(shí)數(shù)的取值范圍;

)當(dāng)時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的左、右焦點(diǎn)分別為,,過作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.

(Ⅰ)求橢圓的方程;

(Ⅱ),是橢圓上位于直線兩側(cè)的兩點(diǎn).若直線過點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案