【題目】(本小題滿分12分)
如圖,已知四棱錐的底面為菱形,且, .
(I)求證:平面 平面;
(II)求二面角的余弦值.
【答案】(I)證明:見解析
(II)二面角的余弦值為
【解析】本試題主要考查了面面垂直和二面角的求解的綜合運(yùn)用。
(1)根據(jù)已知條件找到線面垂直,然后利用面面垂直的判定定理得到其證明。
(2)合理的建立空間直角坐標(biāo)系,然后表示出點(diǎn)的坐標(biāo)和向量的坐標(biāo),借助于平面的法向量,得到向量的夾角,從而得到二面角的平面角的大小。
(I)證明:取的中點(diǎn),連接
為等腰直角三角形
……………………………………2分
又
是等邊三角形
,又
, …………………………4分
,又
平面 平面;……………………………………6分
(II)以中點(diǎn) 為坐標(biāo)原點(diǎn),以所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系如圖所示,
則
……………………8分
設(shè)平面的法向量
,即,解得,
設(shè)平面的法向量
,即,解得,
…………………………………………………………10分
所以二面角的余弦值為…………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx. (Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知 = .
(1)求角A的大;
(2)當(dāng)a=6時(shí),求△ABC面積的最大值,并指出面積最大時(shí)△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中秋節(jié)即將到來,為了做好中秋節(jié)商場(chǎng)促銷活動(dòng),某商場(chǎng)打算將進(jìn)行促銷活動(dòng)的禮品盒重新設(shè)計(jì).方案如下:將一塊邊長(zhǎng)為10的正方形紙片剪去四個(gè)全等的等腰三角形, , , 再將剩下的陰影部分折成一個(gè)四棱錐形狀的包裝盒,其中重合于點(diǎn), 與重合, 與重合, 與重合, 與重合(如圖所示).
(1)求證:平面平面;
(2)已知,過作交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對(duì)任意x∈(0,+∞),都有 ,則 的值是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明函數(shù)f(x)的奇偶性
(2)判斷并證明當(dāng)x∈(﹣1,1)時(shí)函數(shù)f(x)的單調(diào)性;
(3)在(2)成立的條件下,解不等式f(2x﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】100名學(xué)生報(bào)名參加A、B兩個(gè)課外活動(dòng)小組,報(bào)名參加A組的人數(shù)是全體學(xué)生人數(shù)的 ,報(bào)名參加B組的人數(shù)比報(bào)名參加A組的人數(shù)多3,兩組都沒報(bào)名的人數(shù)是同時(shí)報(bào)名參加A、B兩組人數(shù)的 多1,求同時(shí)報(bào)名參加A、B兩組人數(shù)( )
A.36
B.13
C.24
D.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞) 上單調(diào)遞減的函數(shù)是( )
A.y=x﹣2
B.y=x﹣1
C.y=x2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com