如右圖,已知
ABCD為正方形,
,
,
.
(1)求證:平面
平面
;
(2)求點
A到平面
BEF的距離;
(1)連
AC交
BD于
O,取
BF的中點
G,連
EG,
…………………6分
(2)由(1)知
AO//
EG 到平面
BEF的距離就是
A到平面
BEF的距離
過
O作
即點
A到平面
BEF的距離為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
是邊長為
的菱形,
,
底面
,
,
為
的中點,
為
的中點.
(Ⅰ)證明:直線
平面
;
(Ⅱ)求異面直線
與
所成角的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四邊形ABCD中,
為正三角形,
,
,AC與BD交于O點.將
沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為
,且P點在平面ABCD內(nèi)的射影落在
內(nèi).
(Ⅰ)求證:
平面PBD;
(Ⅱ)若
時,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在正方體
中,
是棱
的中點,
在棱
上.
且
,若二面角
的余弦值為
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在長方體ABCD-A
1B
1C
1D
1中,AB=2,BC=B
1B=1,M、N分別是AD、DC的中點.
(1)求證:MN//A
1C
1;
(2)求:異面直線MN與BC
1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知直三棱柱
中,△
為等腰直角三角形,∠
=90°,且
=
,
、
、
分別為
、
、
的中點.
(1)求證:
∥平面
;
(2)求證:
⊥平面
;
(3)求二面角
的余弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在底面為直角梯形的四棱錐
中
,
平面
,
,
,
.
⑴求證:
;
⑵求直線
與平面
所成的角;
⑶設(shè)點
在棱
上,
,若
∥平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
正四棱柱
中,底面邊長為
,側(cè)棱長為4,E,F(xiàn)分別為棱AB,CD的中點,
.則三棱錐
的體積V( )
查看答案和解析>>