【題目】已知a∈R,函數f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)是否存在實數m使得 恒成立?若存在,求實數m的值;若不存在,說明理由.
【答案】解:(Ⅰ)設切點為(x0 , 0),則f′(x)= , 依題意 ,即 ,
解得 .
∴f(x)=ln(x+1)﹣x,f′(x)= .
當x變化時,f′(x)與f(x)的變化情況如下表:
x | (﹣1,0) | 0 | (0,+∞) |
f′(x) | + | 0 | ﹣ |
f(x) | 單調遞增 | 極大值 | 單調遞減 |
∴f(x)在(﹣1,0)上單調遞增,在(0,+∞)上單調遞減;
(Ⅱ)存在m= ,理由如下:
等價于 ,或 .
令g(x)=f(x)﹣mx(1﹣ex)=ln(x+1)﹣x﹣mx(1﹣ex),x∈(﹣1,+∞),
則g′(x)= ,g″(x)= ,
① 若m= ,
當﹣1<x<0時,﹣ <﹣1,m(x+2)ex<1,∴g″(x)<0;
當x>0時,﹣ >﹣1,m(x+2)ex>1,∴g″(x)>0,
∴g′(x)在單調遞減區(qū)間為(﹣1,0),單調遞增為(0,+∞),
又g′(0)=0,∴g′(x)≥0,當且僅當x=0時,g′(x)=0,
從而g(x)在(﹣1,+∞)上單調遞增,又g(0)=0,
∴ 或 ,即 >m(1﹣ex)成立.
②若m ,∵g″(0)=2m﹣1>0,
g″( )= <﹣4m2+m( )<0,
∴存在x1∈( ,0),使得g″(x1)=0,
∵g″(x)在(﹣1,0)上單調遞增,
∴當x∈(x1 , 0)時,g″(x)>0,g′(x)在(x1 , 0)上遞增,
又g′(0)=0,∴當x∈(x1 , 0)時,g′(x)<0,
從而g(x)在(x1 , 0)上遞減,又g(0)=0,
∴當x∈(x1 , 0)時,g(x)>0,
此時 >m(1﹣ex)不恒成立;
③若m< ,同理可得 >m(1﹣ex)不恒成立.
綜上所述,存在實數m=
【解析】(Ⅰ)設出切點坐標,由 即可求得a值,把a值代入函數解析式,得到當x變化時,f′(x)與f(x)的變化情況表,由圖表可得f(x)的單調區(qū)間;(Ⅱ) 等價于 ,或 ,令g(x)=f(x)﹣mx(1﹣ex)=ln(x+1)﹣x﹣mx(1﹣ex),x∈(﹣1,+∞),求其二階導數,然后對m分類討論得答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調遞增,求a的取值范圍;
(Ⅲ)討論函數g(x)=f'(x)﹣x的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三數學競賽初賽考試結束后,對考生成績進行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分為六組,第一組.如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數依次成等差數列,且第六組有4人.
(1)請補充完整頻率分布直方圖,并估計這組數據的平均數M;
(2)現根據初賽成績從第四組和第六組中任意選2人,記他們的成績分別為x,y.若|x﹣y|≥10,則稱此二人為“黃金幫扶組”,試求選出的二人為“黃金幫扶組”的概率P1;
(3)以此樣本的頻率當作概率,現隨機在這組樣本中選出3名學生,求成績不低于120分的人數ξ的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數在上是單調遞增函數,則的取值范圍是______.
【答案】
【解析】∵,
∴,
又函數在單調遞增,
∴在上恒成立,
即在上恒成立。
又當時, ,
∴。
又,
∴。
故實數的取值范圍是。
答案:
點睛:對于導函數和函數單調性的關系要分清以下結論:
(1)當時,若,則在區(qū)間D上單調遞增(減);
(2)若函數在區(qū)間D上單調遞增(減),則在區(qū)間D上恒成立。即解題時可將函數單調性的問題轉化為的問題,但此時不要忘記等號。
【題型】填空題
【結束】
19
【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;。何覜]有偷.根據以上條件,可以判斷偷珠寶的人是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,圓C的極坐標方程為: .以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線的參數方程為: (為參數).
(1)求圓C的直角坐標方程和直線l的普通方程;
(2)當θ∈(0,π)時,求直線l與圓C的公共點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數的最小值為.
(1)求;
(2)是否存在實數同時滿足下列條件:
①;
②當的定義域為時, 值域為?若存在, 求出的值;若不存在, 說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com