【題目】某市為提升中學(xué)生的數(shù)學(xué)素養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦了一次“數(shù)學(xué)文化知識(shí)大賽”,分預(yù)賽和復(fù)賽兩個(gè)環(huán)節(jié).已知共有8000名學(xué)生參加了預(yù)賽,現(xiàn)從參加預(yù)賽的全體學(xué)生中隨機(jī)地抽取100人的預(yù)賽成績(jī)作為樣本,得到如下頻率分布直方圖.
(1)規(guī)定預(yù)賽成績(jī)不低于80分為優(yōu)良,若從上述樣本中預(yù)賽成績(jī)不低于60分的學(xué)生中隨機(jī)地抽取2人,求恰有1人預(yù)賽成績(jī)優(yōu)良的概率;
(2)由頻率分布直方圖可認(rèn)為該市全體參加預(yù)賽學(xué)生的預(yù)賽成績(jī)Z服從正態(tài)分布N(μ,σ2),其中μ可近似為樣本中的100名學(xué)生預(yù)賽成績(jī)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替),且σ2=362.利用該正態(tài)分布,估計(jì)全市參加預(yù)賽的全體學(xué)生中預(yù)賽成績(jī)不低于91分的人數(shù);
(3)預(yù)賽成績(jī)不低于91分的學(xué)生將參加復(fù)賽,復(fù)賽規(guī)則如下:①每人的復(fù)賽初始分均為100分;②參賽學(xué)生可在開(kāi)始答題前自行決定答題數(shù)量n,每一題都需要“花”掉(即減去)一定分?jǐn)?shù)來(lái)獲取答題資格,規(guī)定答第k題時(shí)“花”掉的分?jǐn)?shù)為0.1k(k∈(1,2n));③每答對(duì)一題加1.5分,答錯(cuò)既不加分也不減分;④答完n題后參賽學(xué)生的最終分?jǐn)?shù)即為復(fù)賽成績(jī).已知學(xué)生甲答對(duì)每道題的概率均為0.7,且每題答對(duì)與否都相互獨(dú)立.若學(xué)生甲期望獲得最佳的復(fù)賽成績(jī),則他的答題數(shù)量n應(yīng)為多少?
(參考數(shù)據(jù):;若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
【答案】(1)(2)182;(3)n應(yīng)該是10.
【解析】
(1)求出樣本中成績(jī)不低于60分的學(xué)生共有40人,其中成績(jī)優(yōu)良的人數(shù)為15人,由此能求出恰有1人預(yù)賽成績(jī)優(yōu)良的概率.
(2)根據(jù)頻率分布直方圖求得樣本中的100名學(xué)生預(yù)賽成績(jī)的平均值53,則μ=53,由σ2=362,得σ=19,從而P(Z≥91)=P(Z≥μ+2σ)求解.
(3)以隨機(jī)變量ξ表示甲答對(duì)的題數(shù),則ξ~B(n,0.7),且Eξ=0.7n,記甲答完n題所加的分?jǐn)?shù)為隨機(jī)變量X,則X=1.5ξ,EX=1.5Eξ=1.05n,為了獲取答n題的資格,甲需要“花”掉的分?jǐn)?shù)為:0.1×(1+2+3+…+n)=0.05(n2+n),設(shè)甲答完n題的分?jǐn)?shù)為M(n),則M(n)=100﹣0.05(n2+n)+1.05n=﹣0.05(n﹣10)2+105,由此能求出學(xué)生甲期望獲得最佳復(fù)賽成績(jī)的答題量n的值.
(1)由題意得樣本中成績(jī)不低于60分的學(xué)生共有:
(0.0125+0.0075)×20×100=40人,
其中成績(jī)優(yōu)良的人數(shù)為0.0075×20×100=15人,
記“從樣本中預(yù)賽成績(jī)不低于60分的學(xué)生中隨機(jī)地抽取2人,恰有1人預(yù)賽成績(jī)優(yōu)良”為事件C,
則恰有1人預(yù)賽成績(jī)優(yōu)良的概率:
P(C).
(2)由題意知樣本中的100名學(xué)生預(yù)賽成績(jī)的平均值為:
10×0.1+30×0.2+50×0.3+70×0.25+90×0.15=53,則μ=53,
又由σ2=362,∴σ=19,
∴P(Z≥91)=P(Z≥μ+2σ)0.02275,
∴估計(jì)全市參加參賽的全體學(xué)生中成績(jī)不低于91分的人數(shù)為:
8000×0.02275=182,
即全市參賽學(xué)生中預(yù)賽成績(jī)不低于91分的人數(shù)為182.
(3)以隨機(jī)變量ξ表示甲答對(duì)的題數(shù),則ξ~B(n,0.7),且Eξ=0.7n,
記甲答完n題所加的分?jǐn)?shù)為隨機(jī)變量X,則X=1.5ξ,
∴EX=1.5Eξ=1.05n,
依題意為了獲取答n題的資格,甲需要“花”掉的分?jǐn)?shù)為:
0.1×(1+2+3+…+n)=0.05(n2+n),
設(shè)甲答完n題的分?jǐn)?shù)為M(n),
則M(n)=100﹣0.05(n2+n)+1.05n=﹣0.05(n﹣10)2+105,
由于n∈N*,∴當(dāng)n=10時(shí),M(n)取最大值105,即復(fù)賽成績(jī)的最大值為105.
∴若學(xué)生甲期望獲得最佳復(fù)賽成績(jī),則他的答題量n應(yīng)該是10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程,點(diǎn)在直線上,直線與曲線交于兩點(diǎn).
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱的底面為等邊三角形,、分別為、的中點(diǎn),點(diǎn)在棱上,且.
(1)證明:平面平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為5的菱形ABCD沿對(duì)角線AC折起,頂點(diǎn)B移動(dòng)至處,在以點(diǎn)B',A,C,為頂點(diǎn)的四面體AB'CD中,棱AC、B'D的中點(diǎn)分別為E、F,若AC=6,且四面體AB'CD的外接球球心落在四面體內(nèi)部,則線段EF長(zhǎng)度的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年初新冠病毒疫情爆發(fā),全國(guó)范圍開(kāi)展了“停課不停學(xué)”的線上教學(xué)活動(dòng).哈六中數(shù)學(xué)組積極研討網(wǎng)上教學(xué)策略:先采取甲、乙兩套方案教學(xué),并對(duì)分別采取兩套方案教學(xué)的班級(jí)的次線上測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì)如圖所示:
(1)請(qǐng)?zhí)顚?xiě)下表(要求寫(xiě)出計(jì)算過(guò)程)
平均數(shù) | 方差 | |
甲 | ||
乙 |
(2)從下列三個(gè)不同的角度對(duì)這次方案選擇的結(jié)果進(jìn)行
①?gòu)钠骄鶖?shù)和方差相結(jié)合看(分析哪種方案的成績(jī)更好);
②從折線圖上兩種方案的走勢(shì)看(分析哪種方案更有潛力).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校藝術(shù)學(xué)院2019級(jí)表演專(zhuān)業(yè)有27人,播音主持專(zhuān)業(yè)9人,影視編導(dǎo)專(zhuān)業(yè)18人.某電視臺(tái)綜藝節(jié)目招募觀眾志愿者,現(xiàn)采用分層抽樣的方法從上述三個(gè)專(zhuān)業(yè)的人員中選取6人作為志愿者.
(1)分別寫(xiě)出各專(zhuān)業(yè)選出的志愿者人數(shù);
(2)將6名志愿者平均分成三組,且每組的兩名同學(xué)選自不同的專(zhuān)業(yè),通過(guò)適當(dāng)?shù)姆绞搅谐鏊锌赡艿慕Y(jié)果,并求表演專(zhuān)業(yè)的志愿者與播音主持專(zhuān)業(yè)的志愿者分在一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為,③∠ABC.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點(diǎn)為F.
(1)在線段AB上是否存在一點(diǎn)G,使得AF平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請(qǐng)說(shuō)明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是邊長(zhǎng)為的等邊三角形,E、F分別為AB、AC的中點(diǎn),,沿EF把折起,使點(diǎn)A翻折到點(diǎn)P的位置,連接PB、PC,則四棱錐的外接球的表面積的最小值為________,此時(shí)四棱錐的體積為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com