【題目】某高校藝術(shù)學(xué)院2019級(jí)表演專(zhuān)業(yè)有27人,播音主持專(zhuān)業(yè)9人,影視編導(dǎo)專(zhuān)業(yè)18.某電視臺(tái)綜藝節(jié)目招募觀眾志愿者,現(xiàn)采用分層抽樣的方法從上述三個(gè)專(zhuān)業(yè)的人員中選取6人作為志愿者.

1)分別寫(xiě)出各專(zhuān)業(yè)選出的志愿者人數(shù);

2)將6名志愿者平均分成三組,且每組的兩名同學(xué)選自不同的專(zhuān)業(yè),通過(guò)適當(dāng)?shù)姆绞搅谐鏊锌赡艿慕Y(jié)果,并求表演專(zhuān)業(yè)的志愿者與播音主持專(zhuān)業(yè)的志愿者分在一組的概率.

【答案】1)表演專(zhuān)業(yè)3人,播音主持專(zhuān)業(yè)1人,影視編導(dǎo)專(zhuān)業(yè)2人; 2)可能的結(jié)果見(jiàn)解析;.

【解析】

(1)先求解分層抽樣抽取的比例,再逐個(gè)計(jì)算即可.

(2) 設(shè)表演專(zhuān)業(yè)的3位志愿者為,,,播音主持專(zhuān)業(yè)的志愿者為;影視編導(dǎo)專(zhuān)業(yè)的志愿者為,.再利用列舉法求解即可.

1)由題可知選取比例為,故表演專(zhuān)業(yè)人,播音主持專(zhuān)業(yè)人,影視編導(dǎo)專(zhuān)業(yè).

2)設(shè)表演專(zhuān)業(yè)的3位志愿者為,,,播音主持專(zhuān)業(yè)的志愿者為;影視編導(dǎo)專(zhuān)業(yè)的志愿者為,.則符合條件的所有可能結(jié)果有以下6種:

,,;

,,

,,;

,,;

,,

,,.

其中分在一組的情況恰有2種,設(shè)所求事件為,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列的極限一節(jié),課本中給出了計(jì)算由拋物線(xiàn)軸以及直線(xiàn)所圍成的曲邊區(qū)域面積的一種方法:把區(qū)間平均分成份,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使得每個(gè)矩形的左上端點(diǎn)都在拋物線(xiàn)上(如圖),則當(dāng)時(shí),這些小矩形面積之和的極限就是.已知.利用此方法計(jì)算出的由曲線(xiàn)、軸以及直線(xiàn)所圍成的曲邊區(qū)域的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為正整數(shù),各項(xiàng)均為正整數(shù)的數(shù)列滿(mǎn)足:,記數(shù)列的前項(xiàng)和為

1)若,求的值;

2)若,求的值;

3)若為奇數(shù),求證:的充要條件是為奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為提升中學(xué)生的數(shù)學(xué)素養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦了一次數(shù)學(xué)文化知識(shí)大賽,分預(yù)賽和復(fù)賽兩個(gè)環(huán)節(jié).已知共有8000名學(xué)生參加了預(yù)賽,現(xiàn)從參加預(yù)賽的全體學(xué)生中隨機(jī)地抽取100人的預(yù)賽成績(jī)作為樣本,得到如下頻率分布直方圖.

1)規(guī)定預(yù)賽成績(jī)不低于80分為優(yōu)良,若從上述樣本中預(yù)賽成績(jī)不低于60分的學(xué)生中隨機(jī)地抽取2人,求恰有1人預(yù)賽成績(jī)優(yōu)良的概率;

2)由頻率分布直方圖可認(rèn)為該市全體參加預(yù)賽學(xué)生的預(yù)賽成績(jī)Z服從正態(tài)分布Nμ,σ2),其中μ可近似為樣本中的100名學(xué)生預(yù)賽成績(jī)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替),且σ2362.利用該正態(tài)分布,估計(jì)全市參加預(yù)賽的全體學(xué)生中預(yù)賽成績(jī)不低于91分的人數(shù);

3)預(yù)賽成績(jī)不低于91分的學(xué)生將參加復(fù)賽,復(fù)賽規(guī)則如下:①每人的復(fù)賽初始分均為100分;②參賽學(xué)生可在開(kāi)始答題前自行決定答題數(shù)量n,每一題都需要掉(即減去)一定分?jǐn)?shù)來(lái)獲取答題資格,規(guī)定答第k題時(shí)掉的分?jǐn)?shù)為0.1kk∈(1,2n));③每答對(duì)一題加1.5分,答錯(cuò)既不加分也不減分;④答完n題后參賽學(xué)生的最終分?jǐn)?shù)即為復(fù)賽成績(jī).已知學(xué)生甲答對(duì)每道題的概率均為0.7,且每題答對(duì)與否都相互獨(dú)立.若學(xué)生甲期望獲得最佳的復(fù)賽成績(jī),則他的答題數(shù)量n應(yīng)為多少?

(參考數(shù)據(jù):;若ZNμ,σ2),則PμσZμ+σ≈0.6827,PμZμ+2σ≈0.9545,PμZμ+3σ≈0.9973

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)).設(shè)直線(xiàn)的交點(diǎn)為,當(dāng)變化時(shí)的點(diǎn)的軌跡為曲線(xiàn).

1)求出曲線(xiàn)的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線(xiàn)的極坐標(biāo)方程為,點(diǎn)是射線(xiàn)與曲線(xiàn)的交點(diǎn),求點(diǎn)的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),,以為圓心的圓過(guò)兩點(diǎn),且與直線(xiàn)相切.若存在定點(diǎn),使得當(dāng)運(yùn)動(dòng)時(shí),為定值,則點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面α平面βl,A,Cα內(nèi)不同的兩點(diǎn),B,Dβ內(nèi)不同的兩點(diǎn),且AB,C,D直線(xiàn)l,M,N分別是線(xiàn)段ABCD的中點(diǎn).下列判斷正確的是( 。

A.ABCD,則MNl

B.M,N重合,則ACl

C.ABCD相交,且ACl,則BD可以與l相交

D.ABCD是異面直線(xiàn),則MN不可能與l平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角AB,C的對(duì)邊分別為ab,c,已知2a2bcosC+csinB

(Ⅰ)求tanB;

(Ⅱ)若C,ABC的面積為6,求BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿(mǎn)足f1x)<gx)<f2(x),那么就稱(chēng)g(x)為f1x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案