【題目】如圖,下有七張卡片,現(xiàn)這樣組成一個三位數(shù):甲從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在百位,然后把卡片放回;乙再從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在十位,然后把卡片放回;丙又從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在個位,然后把卡片放回。則這樣組成的三位數(shù)的個數(shù)為( )

A. B. C. D.

【答案】C

【解析】

因為本題為有放回的抽取,因此分步確定甲乙丙抽取的卡片種類,即可求出結(jié)果.

第一步:甲從七張卡片中隨機抽出一張,抽到的不同取值為1,2,3,4,共4種情況;

第二步:乙從七張卡片中隨機抽出一張,抽到的不同取值為1,2,3,4,共4種情況;

第三步:丙從七張卡片中隨機抽出一張,抽到的不同取值為1,2,3,4,共4種情況;

因此,這樣組成的三位數(shù)的個數(shù)為.

故選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=sin2xcos2x2sinxcosxxR.

1)求fx)的單調(diào)遞增區(qū)間;

2)求函數(shù)fx)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱中心的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“既要金山銀山,又要綠水青山”。某風景區(qū)在一個直徑米的半圓形花圓中設計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。

(1)設(弧度),將綠化帶的總長度表示為的函數(shù);

(2)求綠化帶的總長度的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)已知函數(shù)

)求函數(shù)的單調(diào)遞增區(qū)間;

)證明:當時,;

)確定實數(shù)的所有可能取值,使得存在,當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,過對角線的一個平面交于點,交.

①四邊形一定是平行四邊形;

②四邊形有可能是正方形;

③四邊形在底面內(nèi)的投影一定是正方形;

④四邊形有可能垂直于平面

以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若的圖像在處的切線與直線垂直,求實數(shù)的值及切線方程;

(Ⅱ)若過點存在3條直線與曲線相切,求的取值范圍

查看答案和解析>>

同步練習冊答案