【題目】如圖,在正方體中,過對角線的一個平面交于點,交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)
【答案】①③④
【解析】分析:由題意結(jié)合幾何關(guān)系逐一考查所給命題的真假即可求得最終結(jié)果.
詳解:如圖所示:
①由于平面BCB1C1∥平面ADA1D1,并且B、E、F、D1,四點共面,故ED1∥BF,
同理可證,FD1∥EB,故四邊形BFD1E一定是平行四邊形,故①正確;
②若BFD1E是正方形,有ED1⊥BE,結(jié)合A1D1⊥BE可得BE⊥平面ADD1A1,明顯矛盾,故②錯誤;
③由圖得,BFD1E在底面ABCD內(nèi)的投影一定是正方形ABCD,故③正確;
④當(dāng)點E和F分別是對應(yīng)邊的中點時,EF⊥平面BB1D,則平面BFD1E⊥平面BB1D,故④正確.
綜上可得:題中所給的結(jié)論正確的為①③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD.
(1)求證:EF∥平面PAD;
(2)若EF⊥PC,求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若a、b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實根的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 “直線 與圓 相交”; :“方程 有一正根和一負(fù)根”.若 或 為真, 非p為真,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點為F,不垂直x軸且不過F點的直線l與橢圓C相交于A,B兩點.
(Ⅰ)若直線l經(jīng)過點P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(Ⅱ)如果FA⊥FB,原點到直線l的距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了考查兩個變量和之間的線性關(guān)系,甲、乙兩位同學(xué)各自獨立作了次和次試驗,并且利用線性回歸方法,求得回歸直線分別為、,已知兩人得的試驗數(shù)據(jù)中,變量和的數(shù)據(jù)的平均值都相等,且分別都是、,那么下列說法正確的是( )
A. 直線和一定有公共點 B. 必有直線
C. 直線和相交,但交點不一定是 D. 和必定重合
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實數(shù)a的取值范圍為( )
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com