【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機遇,2017年雙11全天交易額達到1682億元,為規(guī)范和評估該行業(yè)的情況,相關(guān)管理部門制定出針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行評價,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(1)完成關(guān)于商品和服務(wù)評價的列聯(lián)表,判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務(wù)好評有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設(shè)對商品和服務(wù)全為好評的次數(shù)為隨機變量:
①求對商品和服務(wù)全為好評的次數(shù)的分布列;
②求的數(shù)學期望和方差.
附:臨界值表:
的觀測值: (其中)
關(guān)于商品和服務(wù)評價的列聯(lián)表:
【答案】(1)答案見解析;(2)①.答案見解析;②.答案見解析.
【解析】試題分析:(1)由題設(shè)中所給數(shù)據(jù)可列出關(guān)于商品和服務(wù)評價的列聯(lián)表,將列聯(lián)表中數(shù)據(jù)代入公式,求得的值,與鄰界值比較,即可得到結(jié)論;(2)①每次購物時,對商品和服務(wù)全好評的概率為,且的取值可以是.根據(jù)獨立重復(fù)試驗概率公式求出相應(yīng)的概率,可得對商品和服務(wù)全好評的次數(shù)的分布列;②利用二項分布的數(shù)學期望和方差公式求的數(shù)學期望和方差.
試題解析:(1)由題意可得關(guān)于商品和服務(wù)評價的列聯(lián)表如下:
,
故能在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務(wù)好評有關(guān).
(2)①每次購物時,對商品和服務(wù)全為好評的概率為,且的取值可以是0,1,2,3.
其中;
; .
的分布列為:
②, ,
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù).當時, .
(1) 求曲線在點處的切線方程;
(2) 若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關(guān)鍵比賽的部分數(shù)據(jù)統(tǒng)計.兩位選手在此次比賽中擊球所使用的各項技術(shù)的比例統(tǒng)計如圖1.在乒乓球比賽中,接發(fā)球技術(shù)是指回接對方發(fā)球時使用的各種方法.選手乙在比賽中的接發(fā)球技術(shù)統(tǒng)計如表1,其中的前4項技術(shù)統(tǒng)稱反手技術(shù),后3項技術(shù)統(tǒng)稱為正手技術(shù).
圖1
選手乙的接發(fā)球技術(shù)統(tǒng)計表
技術(shù) | 反手擰球 | 反手搓球 | 反手拉球 | 反手撥球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次數(shù) | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術(shù)中,差異最為顯著的是哪兩項技術(shù)?
(Ⅱ)乒乓球接發(fā)球技術(shù)中的拉球技術(shù)包括正手拉球和反手拉球.從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認為選手乙的反手技術(shù)更穩(wěn)定還是正手技術(shù)更穩(wěn)定?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤(單位:元)關(guān)于當天需求量(單位:枝, )的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(1)若花店一天購進17枝玫瑰花, 表示當天的利潤(單位:元),求的分布列及數(shù)學期望;
(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應(yīng)購進16枝好還是17枝好?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的菱形, .已知, .
(Ⅰ)證明: ;
(Ⅱ)若為上一點,記三棱錐的體積和四棱錐的體積分別為和,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為矩形,四邊形為梯形, ,平面與平面垂直,且.
(1)求證: 平面;
(2)若,且平面與平面所成銳二面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)當時,求證:函數(shù)有且僅有一個零點;
(Ⅲ)當時,寫出函數(shù)的零點的個數(shù).(只需寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com