已知四邊形ABCD滿足,E是BC的中點(diǎn),將△BAE沿AE翻折成,F(xiàn)為的中點(diǎn).
(1)求四棱錐的體積;
(2)證明:;
(3)求面所成銳二面角的余弦值.

(1);(2)證明過(guò)程詳見(jiàn)解析;(3)

解析試題分析:本題主要考查面面垂直、線面垂直、錐體的體積、線面平行、二面角、向量法等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問(wèn),由已知條件知,△ABE為等邊三角形,所以取AE中點(diǎn),則,由面面垂直的性質(zhì)得B1M⊥面AECD,所以是錐體的高,最后利用錐體的計(jì)算公式求錐體的體積;第二問(wèn),連結(jié)DE交AC于O,由已知條件得AECD為棱形,O為DE中點(diǎn),在中,利用中位線,得,再利用線面平行的判定得面ACF;第三問(wèn),根據(jù)題意,觀察出ME,MD,兩兩垂直,所以以它們?yōu)檩S建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)以及相關(guān)向量的坐標(biāo),利用向量法中求平面的法向量的方法求出平面和平面的法向量,最后利用夾角公式求夾角的余弦.
(1)取AE的中點(diǎn)M,連結(jié)B1M,因?yàn)锽A=AD=DC=BC=a,△ABE為等邊三角形,則B1M=,又因?yàn)槊鍮1AE⊥面AECD,所以B1M⊥面AECD,
所以        4分
(2)連結(jié)ED交AC于O,連結(jié)OF,因?yàn)锳ECD為菱形,OE=OD所以FO∥B1E,
所以。     7分

(3)連結(jié)MD,則∠AMD=,分別以ME,MD,MB1為x,y,z軸建系,則,

,,,所以1,,,,設(shè)面ECB1的法向量為,
令x="1," ,同理面ADB1的法向量為
, 所以,
故面所成銳二面角的余弦值為.    12分
考點(diǎn):面面垂直、線面垂直、錐體的體積、線面平行、二面角、向量法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖6,四棱柱的所有棱長(zhǎng)都相等,,四邊形和四邊形為矩形.
(1)證明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形與梯形所在的平面互相垂直,,,的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面;
(3)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB ≌△DCB,EA=EB=AB=1,PA=,連接CE并延長(zhǎng)交AD于F.

(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方體的棱長(zhǎng)為2,E、F分別是、的中點(diǎn),過(guò)、E、F作平面于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知長(zhǎng)方形中,,的中點(diǎn).將沿折起,使得平面平面.


(1)求證:;
(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

,,是平面內(nèi)的三點(diǎn),設(shè)向量,且,則________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.

(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案