已知f(x)的導(dǎo)數(shù)f′(x)=3x2-2(a+1)x+a-2,且f(0)=2a,當(dāng)a>2時(shí),求不等式f(x)<0的解集.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:首先根據(jù)導(dǎo)函數(shù)和f(0)=2a,求出原函數(shù),再因式分解,根據(jù)a>2,即可得到解集.
解答: 解:∵f′(x)=3x2-2(a+1)x+a-2,
∴f(x)=x3-(a+1)x2+(a-2)x+m,
∴f(0)=m=2a,
∴f(x)=x3-(a+1)x2+(a-2)x+2a=x3-x2-2x-ax2+ax+2a(a-2)x+2a=x(x2-x-2)-a(x2-x-2)
=(x-a)(x2-x-2)=(x-a)(x-2)(x+1)<0
∵a>2,
∴不等式f(x)<0的解集解集為:(-∞,-1)∪(2,a)
點(diǎn)評(píng):本題主要考查了不等式解集的求法,以及導(dǎo)數(shù)的有關(guān)問(wèn)題,本題關(guān)鍵是因式分解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜率為-1的直線過(guò)拋物線y2=-2px,(p>0)的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn),|AB|=8.
(1)求拋物線的方程.
(2)求∠AOB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.求C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:|x-a|<4;q:(x-2)(x-3)<0,若¬p是¬q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M為曲線C上任意一點(diǎn),F(xiàn)(l,0)為定點(diǎn),已知點(diǎn)M到直線x=4的距離等于2|MF|.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l是圓x2+y2=2的任意一條切線,且與曲線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).試推斷是否存在直線l,使
OA
OB
=1?若存在,求出直線z的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為B.Q為拋物線y2=12x的焦點(diǎn),且
F1B
QB
=0,2
F1F2
+
QF1
=0.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)定點(diǎn)P(0,2)的直線l與橢圓C交于M,N兩點(diǎn)(M在P,N之間),設(shè)直線l的斜率為k(k>0),在x軸上是否存在點(diǎn)A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD和平行四邊形ACEF所在的平面相交于直線AC,EC⊥平面ABCD,AB=1,AD=2,∠ADC=60°,AF=
3

(Ⅰ)求證:AC⊥BF
(Ⅱ)求二面角F-BD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)雙曲線C1
y2
a2
-
x2
b2
=1(a>0,b>0)的上焦點(diǎn)為F,上頂點(diǎn)為A,點(diǎn)B為雙曲線虛軸的左端點(diǎn),已知Cl的離心率為
2
3
3
,且△ABF的面積S=1-
3
2

(Ⅰ)求雙曲線Cl的方程;
(Ⅱ)設(shè)拋物線C2的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F,動(dòng)直線l與C2相切于點(diǎn)P,與C2的準(zhǔn)線相交于點(diǎn)Q試推斷以線段PQ為直徑的圓是否恒經(jīng)過(guò)y軸上的某個(gè)定點(diǎn)M?若是,求出定點(diǎn)M的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a,b,c分別為∠A,∠B,∠C的對(duì)邊.
(1)若∠A=45°,a=4
2
,c=4,求∠C;
(2)若a2+c2-b2=ac,求∠B.

查看答案和解析>>

同步練習(xí)冊(cè)答案