設(shè)函數(shù)f(x)=(x+1)ln x-2x.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

(1)在(0,+∞)上單調(diào)遞增.(2)0

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)上為增函數(shù)(為常數(shù)),則稱為區(qū)間上的“一階比增函數(shù)”,的一階比增區(qū)間.
(1) 若上的“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(2) 若  (,為常數(shù)),且有唯一的零點(diǎn),求的“一階比增區(qū)間”;
(3)若上的“一階比增函數(shù)”,求證:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex(axb)-x2-4x,曲線yf(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使成立,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax+ln xg(x)=ex.
(1)當(dāng)a≤0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若不等式g(x)< 有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,求證:當(dāng)時(shí),
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲方是一農(nóng)場,乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x=2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱S為賠付價(jià)格).
(1)將乙方的年利潤w(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;
(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)處取得極小值,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間內(nèi),另一個(gè)在區(qū)間外,
的取值范圍;
(3)已知且函數(shù)上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案