已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間內(nèi),另一個(gè)在區(qū)間外,
求的取值范圍;
(3)已知且函數(shù)在上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
(1)① 當(dāng)時(shí),函數(shù)有1個(gè)零點(diǎn): ② 當(dāng)時(shí),函數(shù)有2個(gè)零點(diǎn): ③ 當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn): ④ 當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn):(2)(3)探究詳見(jiàn)解析.
解析試題分析:(1)令n=1,n=2,求出g(x)的表達(dá)式,在分類求出g(x)=0的解即可.
(2)對(duì)函數(shù)求導(dǎo),,對(duì)其分母構(gòu)造函數(shù),則=0由有一根在內(nèi),另一個(gè)在區(qū)間外,可得,即,解出a即可.
(3)由(2)可知存在 ,結(jié)合已知條件,可得函數(shù)在上是單調(diào)減函數(shù), 所 的分子的值小于等于0,其相應(yīng)的判別式小于等于0,在結(jié)合已知可證得即可.
試題解析:(1),
① 當(dāng)時(shí),函數(shù)有1個(gè)零點(diǎn): 1分
② 當(dāng)時(shí),函數(shù)有2個(gè)零點(diǎn): 2分
③ 當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn): 3分
④ 當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn):
4分
(2) 5分
設(shè),的圖像是開(kāi)口向下的拋物線.
由題意對(duì)任意有兩個(gè)不等實(shí)數(shù)根,
且
則對(duì)任意,即, 7分
又任意關(guān)于遞增,,
故
所以的取值范圍是 9分
(3)由(2)知, 存在,又函數(shù)在上是單調(diào)函數(shù),故函數(shù)在上是單調(diào)減函數(shù), 10分
從而即 11分
所以
由知 13分
即對(duì)任意<
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=(x+1)ln x-2x.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值點(diǎn);
(Ⅲ)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中,為正整數(shù),、、均為常數(shù),曲線在處的切線方程為.
(1)求、、的值;
(2)求函數(shù)的最大值;
(3)證明:對(duì)任意的都有.(為自然對(duì)數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)若與在處相切,試求的表達(dá)式;
(Ⅱ)若在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明不等式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若,當(dāng)時(shí),試比較與2的大。
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),(),求k的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若在處取得極值,求實(shí)數(shù)的值;
(2)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com