.(本題滿(mǎn)分13分)設(shè)函數(shù),方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求證:數(shù)列{)是等差數(shù)列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的條件下,是否存在最小正整數(shù)m,使得對(duì)任意n∈N﹡,有成立,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。

 

 

 

【答案】

解:(1)證明:由題意得: 有唯一解,得

,即

為等差數(shù)列                         ………………………4分

(2)又,即,解得

,即

   ………………………8分

(3)由(2)得,即為

,而 ,故

即最小的正整數(shù)的值為10.               ………………………13分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分13分)

已知集合,,.

(1) 求,;   (2) 若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省寧波萬(wàn)里國(guó)際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分13分)的三個(gè)內(nèi)角依次成等差數(shù)列.

   (Ⅰ)若,試判斷的形狀;

   (Ⅱ)若為鈍角三角形,且,求

的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿(mǎn)分13分)

在銳角中,,分別為內(nèi)角,所對(duì)的邊,且滿(mǎn)足

(Ⅰ)求角的大。

(Ⅱ)若,且,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題

(本題滿(mǎn)分13分)展開(kāi)式中,求:

(1)第6項(xiàng);   (2) 第3項(xiàng)的系數(shù);   (3)常數(shù)項(xiàng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級(jí)學(xué)校) 題型:解答題

(本題滿(mǎn)分13分)

如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,ABADAFABBCFEAD.

(Ⅰ)求異面直線(xiàn)BFDE所成角的余弦值;

(Ⅱ)在線(xiàn)段CE上是否存在點(diǎn)M,使得直線(xiàn)AM與平面CDE所成角的正弦值為?若存在,試確定點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案