【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+2)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn.
【答案】(1)an=2n+1;(2)Tn.
【解析】
(1)由n=1時(shí)求得a1,當(dāng)n≥2時(shí),由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=(n﹣1)(n+1)② ,由①﹣②得an=2n+1,再檢驗(yàn)當(dāng)n=1時(shí)是否適合,求得an;
(2)由(1)求得bn,再利用錯(cuò)位相減法求其前n項(xiàng)和Tn即可.
解:(1)由題知:當(dāng)n=1時(shí),有S1=1×3=3=a1;
當(dāng)n≥2時(shí),由Sn=n(n+2)(n∈N*)① ,
可得Sn﹣1=② ,由①﹣② 得an=2n+1,
又n=1時(shí)也適合,故an=2n+1;
(2)由(1)知bn,
∵Tn=357×()3+…+(2n+1)()n③,
∴35×()3+…+(2n+1)④,
由③﹣④可得:
,
所以Tn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)參加三項(xiàng)不同的競(jìng)賽.
(1)每位同學(xué)必須參加一項(xiàng),有幾種不同結(jié)果?
(2)每項(xiàng)競(jìng)賽只有且必須有一位同學(xué)參加,有幾種不同結(jié)果?
(3)每位同學(xué)最多參加一項(xiàng),且每項(xiàng)競(jìng)賽只許有一位同學(xué)參加,有幾種不同結(jié)果?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n﹣5an﹣85,n∈N*
(1)證明:{an﹣1}是等比數(shù)列;
(2)求數(shù)列{Sn}的通項(xiàng)公式.請(qǐng)指出n為何值時(shí),Sn取得最小值,并說明理由?(參考數(shù)據(jù)15=﹣14.85)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了全體學(xué)生的一分鐘跳繩比賽,為了了解學(xué)生的體質(zhì),隨機(jī)抽取了100名學(xué)生,其跳繩個(gè)數(shù)的頻數(shù)分布表如下:
一分鐘跳繩個(gè)數(shù) | |||||||
頻數(shù) | 6 | 12 | 18 | 30 | 16 | 10 | 8 |
(1)若將抽取的100名學(xué)生一分鐘跳繩個(gè)數(shù)作為一個(gè)樣本,請(qǐng)將這100名學(xué)生一分鐘跳繩個(gè)數(shù)的頻率分布直方圖補(bǔ)充完整(只畫圖,不需要寫出計(jì)算過程);
(2)若該校共有3000名學(xué)生,所有學(xué)生的一分鐘跳繩個(gè)數(shù)X近似服從正態(tài)分布,其中為樣本平均數(shù)的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).利用所得正態(tài)分布模型,解決以下問題:
①估計(jì)該校一分鐘跳繩個(gè)數(shù)超過165個(gè)的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在該校所有學(xué)生中任意抽取4人,設(shè)一分鐘跳繩個(gè)數(shù)超過180個(gè)的人數(shù)為,求隨機(jī)變量的分布列、期望與方差./span>
附:若隨機(jī)變量Z服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,邊,,分別是角,,的對(duì)邊,已知且,.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求的內(nèi)切圓方程;
(2)為內(nèi)切圓上任意一點(diǎn),求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實(shí)數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,以F為圓心,3p為半徑的圓交拋物線E于P,Q兩點(diǎn),以線段PF為直徑的圓經(jīng)過點(diǎn)(0,﹣1),則點(diǎn)F到直線PQ的距離為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點(diǎn)至十點(diǎn)時(shí)間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:
是否輔導(dǎo) 性別 | 輔導(dǎo) | 不輔導(dǎo) | 合計(jì) |
男 | 25 | 60 | |
女 | |||
合計(jì) | 40 | 80 |
(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整;
(2)用樣本的頻率估計(jì)總體的概率,估計(jì)這個(gè)城市有子女在讀小學(xué)的成人女性晚上八點(diǎn)至十點(diǎn)輔導(dǎo)子女作業(yè)的概率;
(3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點(diǎn)至十點(diǎn)時(shí)間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了防止受到核污染的產(chǎn)品影響我國民眾的身體健康,要求產(chǎn)品在進(jìn)入市場(chǎng)前必須進(jìn)行兩輪核輻射檢測(cè),只有兩輪都合格才能進(jìn)行銷售,否則不能銷售.已知某產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒有影響.若產(chǎn)品可以銷售,則每件產(chǎn)品獲利40元;若產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元.已知一箱中有4件產(chǎn)品,記一箱產(chǎn)品獲利X元,則P(X≥-80)=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com