已知a=log30.3,b=20.2,c=0.30.3,則a,b,c三者的大小關(guān)系是(  )
A、c>b>a
B、b>a>c
C、a>b>c
D、b>c>a
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)和指數(shù)函數(shù)的性質(zhì)求解.
解答: 解:∵a=log30.3<log31=0,
b=20.2>20=1,
0<c=0.30.3<0.30=1,
∴b>c>a.
故選:D.
點評:本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)和指數(shù)函數(shù)的運算性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實數(shù)集R上的函數(shù),f(1)=-
3
且f(x+1)[1-f(x)]=1+f(x),則f(2010)=( 。
A、2+
3
B、
3
-2
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。
A、已知函數(shù)f(x)=ex+e-x,則f(x)是偶函數(shù)
B、若非零向量
a
,
b
的夾角為θ,則“
a
b
>0”是“θ為銳角”的必要非充分條件
C、若命題p:?x∈R,x2-x+1=0,則¬p:?x∈R,x2-x+1≠0
D、若f′(x0)=0,則函數(shù)y=f(x)在x=x0處取得極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{a,b}的真子集個數(shù)為(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2 
1
2
,(
2
3
-1,3 
1
3
的大小順序為(  )
A、3 
1
3
<2 
1
2
<(
2
3
-1
B、2 
1
2
<3 
1
3
<(
2
3
-1
C、(
2
3
-1<2 
1
2
<3 
1
3
D、2 
1
2
<(
2
3
-1<3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯誤的是( 。
A、命題“若x2-5x+6=0,則x=3”的逆否命題是“若x≠3,則x2-5x+6≠0”
B、若x、y∈R,則“x=y”是xy≥(
x+y
2
2成立的充要條件
C、已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假
D、對命題p:?x∈R,使x2+x+2<0,則¬p:?x∈R,則x2+x+2≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足a4-a72+a10=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b12等于( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R,若函數(shù)F(x)=f(x)+g(x)在區(qū)間(0,3)上不單調(diào),則k的取值范圍為( 。
A、[-4,-2)
B、(-3,-1]
C、(-5,-2]
D、(-5,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=xcosx-sinx,x∈(0,2π)單調(diào)增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案