【題目】已知圓O:經(jīng)過(guò)點(diǎn),與x軸正半軸交于點(diǎn)B.

______;將結(jié)果直接填寫(xiě)在答題卡的相應(yīng)位置上

O上是否存在點(diǎn)P,使得的面積為15?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

【答案】5;存在點(diǎn)滿足題意.

【解析】

(Ⅰ)直接由已知條件可得r;

(Ⅱ)由(Ⅰ)可得圓O的方程x2+y2=25,依題意,A(0,5),B(5,0),求出|AB|=,直線AB的方程為x+y﹣5=0,又由PAB的面積,可得點(diǎn)P到直線AB的距離,設(shè)點(diǎn)P(x0,y0),解得x0+y0=﹣1或x0+y0=11(顯然此時(shí)點(diǎn)P不在圓上,故舍去),聯(lián)立方程組,求解即可得答案.

;

存在.,O的方程為:

依題意,,,,直線AB的方程為

的面積為15,點(diǎn)P到直線AB的距離為,

設(shè)點(diǎn),,

解得顯然此時(shí)點(diǎn)P不在圓上,故舍去,

聯(lián)立方程組,解得

存在點(diǎn)滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,設(shè)f(n)=an , 且f(n)滿足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)設(shè) ,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出的,那么判斷框中填入的條件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某闖關(guān)游戲有這樣一個(gè)環(huán)節(jié):該關(guān)卡有一道上了鎖的門(mén),要想通過(guò)該關(guān)卡,要拿到門(mén)前密碼箱里的鑰匙,才能開(kāi)門(mén)過(guò)關(guān).但是密碼箱需要一個(gè)密碼才能打開(kāi),并且3次密碼嘗試錯(cuò)誤,該密碼箱被鎖定,從而闖關(guān)失。橙说竭_(dá)該關(guān)卡時(shí),已經(jīng)找到了可能打開(kāi)密碼箱的6個(gè)密碼(其中只有一個(gè)能打開(kāi)密碼箱),他決定從中隨機(jī)地選擇1個(gè)密碼進(jìn)行嘗試.若密碼正確,則通關(guān)成功;否則繼續(xù)嘗試,直至密碼箱被鎖定.
(1)求這個(gè)人闖關(guān)失敗的概率;
(2)設(shè)該人嘗試密碼的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C以坐標(biāo)軸為對(duì)稱(chēng)軸,以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,

求橢圓C的方程.

斜率為k的直線l過(guò)點(diǎn)F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=ABC=90°,BC=CD=2BE=2,點(diǎn)M是棱AD的中點(diǎn)

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: (a>b>0)的離心率為 ,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓E的方程;
(2)如圖,設(shè)橢圓E的上、下頂點(diǎn)分別為A1、A2 , P是橢圓上異于A1、A2的任意一點(diǎn),直線PA1、PA2分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T(mén).證明:線段OT的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C及點(diǎn),

過(guò)B作直線l與圓C相交于MN兩點(diǎn),,求直線l的方程;

在圓C上是否存在點(diǎn)P,使得?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案