【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(1)平面ACD,又EM//BF,所以平面ACD,所以平面平面;(2)建立空間直角坐標(biāo)系,求得兩個法向量,,求出二面角。
試題解析:
(I)證明:取AC的中點F,連接BF,
因為AB=BC,所以, 平面ABC,所以CD .
又所以平面ACD.①
因為AM=MD,AF=CF,所以.
因為 ,所以//MF,
所以四邊形BFME是平行四邊形.所以EM//BF.②
由①②,得平面ACD,所以平面平面;
(II)BE平面ABC,
又,
以點B為原點,直線BC、BA、BE分別為x,y,z軸,
建立空間直角坐標(biāo)系B-xyz.
由,得B(0,0,0),C(2,0,0),A(0,2,0),D(2,0,2).
由中點坐標(biāo)公式得, ,,
設(shè)向量為平面BMC的一個法向量,則即
令y=1,得x=0,z=-1,即,
由(I)知, 是平面ACD的一個法向量.
設(shè)二面角B-CM-A的平面角為,
則,
又二面角B-CM-A為銳二面角,故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點, 分別是側(cè)面與底面的中心,則下列命題中錯誤的個數(shù)為( )
①平面; ②異面直線與所成角為;
③與平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF平面, 平面,∴平面,正確;
對于②,∵DF,∴異面直線與所成角即異面直線與所成角,△為等邊三角形,故異面直線與所成角為,正確;
對于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正確;
對于④,,正確,
故選:A
【題型】單選題
【結(jié)束】
8
【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,橢圓的長軸長是短軸長的2倍,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)設(shè)過點的動直線與橢圓相交于兩點.當(dāng)的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為對南康區(qū)和于都縣兩區(qū)縣某次聯(lián)考成績進(jìn)行分析,隨機抽查了兩地一共10000名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.
(1)求成績在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)平均數(shù);
(3)為了分析成績與班級、學(xué)校等方面的關(guān)系,必須按成績再從這10000人中用分層抽樣方法抽出20人作進(jìn)一步分析,則成績在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點 (點在點的左側(cè)),且.
(1)求圓C的方程;(2)過點任作一直線與圓O: 相交于兩點,連接,求證: 定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( 。
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 的兩個頂點的坐標(biāo)分別為,三個內(nèi)角滿足.
(1)若頂點的軌跡為,求曲線的方程;
(2)若點為曲線上的一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com