平面內(nèi)過點A(-2,0),且與直線x=2相切的動圓圓心的軌跡方程是( 。
A、y2=-2x
B、y2=-4x
C、y2=-8x
D、y2=-16x
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,結(jié)合拋物線的定義可知動圓圓心的軌跡是以A為焦點,直線l為準線的拋物線,由此不難求出它的軌跡方程.
解答: 解:設動圓的圓心為M(x,y)
∵圓M過點A(-2,0)且與直線l:x=2相切
∴點M到A的距離等于點M到直線l的距離.
由拋物線的定義,知動圓圓心M的軌跡為以A(-2,0)為焦點的拋物線,其方程為y2=-8x
故選:C.
點評:本題考查了拋物線的定義與標準方程的知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知拋物線C:y2=2px(p>0)上的點(
5
2
,a)到焦點F的距離為3,圓E是以(p,0)為圓心p為半徑的圓.
(1)求拋物線C和圓E的方程;
(2)若圓E內(nèi)切于△PQR,其中Q,R在y軸上,且R點在Q點上方,P在拋物線C上且在x軸下方,當△PQR的面積取最小值時,求直線PR和PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

六個不同顏色涂正方體六個面,相鄰面不涂相同色,有多少種不同涂法?(六種顏色可用完可不用完)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=2,?n∈N*,an+1=
1
1-an
,則a2015=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC,函數(shù)f(x)=(sinA-cosB)x2-(sinB-cosA)x+sinC,x∈R,如果對于任意的實數(shù)x都有f(1-x)=f(x).有下列結(jié)論:①f(0)>f(
1
2
);②△ABC為等邊三角形;③f(x)有最大值;④f(x)的最小值的取值范圍是(-
1
4
,1).上述結(jié)論中,正確結(jié)論的序號為( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點分別為F1(-2,0),F(xiàn)2(2,0),離心率e=
2

(Ⅰ)求雙曲線的標準方程
(Ⅱ)點P是雙曲線上一點,且∠F1PF2=30°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知側(cè)棱長和底面邊長均為1的平行六面體ABCD-A1B1C1D1中,∠BAD=60°,AA1⊥底面ABCD.在該平行六邊形體內(nèi)任取一點P,則點P到點A的距離小于或等于1的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=(-a)n-1(a≠0),求這個數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cosx在x∈[0,
π
6
]時的變化率為
 
;在x∈[
π
3
,
π
2
]時的變化率為
 

查看答案和解析>>

同步練習冊答案