在平面直角坐標系xOy中,已知橢圓C1: +=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
解:(1)因為橢圓C1的左焦點為F1(-1,0),
所以c=1.
將點P(0,1)代入橢圓方程+=1,
得=1,即b=1.
所以a2=b2+c2=2.
所以橢圓C1的方程為+y2=1.
(2)由題意可知,直線l的斜率顯然存在且不等于0,
設直線l的方程為y=kx+m,
由
消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因為直線l與橢圓C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理得2k2-m2+1=0.①
由消去y并整理得k2x2+(2km-4)x+m2=0.
因為直線l與拋物線C2相切,
所以Δ2=(2km-4)2-4k2m2=0,
整理得km=1.②
綜合①②,解得或
所以直線l的方程為y=x+或y=-x-.
科目:高中數(shù)學 來源: 題型:
橢圓C: +=1(a>b>0)的離心率e=,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設BP的斜率為k,MN的斜率為m.證明2m-k為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓C: +=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為( )
(A) +=1 (B) +=1
(C) +=1 (D) +=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A、B兩點,|AB|=4,則C的實軸長為( )
(A) (B)2 (C)4 (D)8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為( )
(A)y2=4x (B)x2=4y
(C)y2=8x (D)x2=8y
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某學生對其親屬30人的飲食習慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(1)根據(jù)莖葉圖,幫助這位學生說明其親屬30人的飲食習慣;
(2)根據(jù)以上數(shù)據(jù)完成下列2×2的列聯(lián)表:
| 主食蔬菜 | 主食肉類 | 合計 |
50歲以下 | |||
50歲以上 | |||
合計 |
(3)能否有99%的把握認為其親屬的飲食習慣與年齡有關(guān),并寫出簡要分析.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com