已知數(shù)列{an}的前項n和為Sn,滿足Sn=2an-2n(n∈N*).
(1)求數(shù)列{an}的通項公式an
(2)若數(shù)列{bn}滿足bn=
1
an+2
,Tn為數(shù)列{bn}的前項n和,求
lim
n→∞
Tn的值;
(3)數(shù)列{an}中是否存在三項ar,as,at(r<s<t)成等差數(shù)列?若存在.請求出一組適合條件的項;若不存在,說明理由.
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得{an+2}是首項為a1+2=4,公比為2的等比數(shù)列.由此能求出an=2n+1-2.
(2)bn=
1
an+2
=
1
2n+1-2+2
=
1
2n+1
,由此利用裂項求和法能求出Tn=
1
2
-
1
2n+1
,從而得到
lim
n→∞
Tn=
lim
n→∞
1
2
-
1
2n+1 
)=
1
2

(3)假設(shè)存在這樣3項,則有ar+at=2as,r<s<t,從而1+2t-r=2(s-r+1),由此推導出數(shù)列{an}中不存在三項ar,as,at(r<s<t)成等差數(shù)列.
解答: 解:(1)a1=S1=2a1-2,a1=2.
an+1=Sn+1-Sn=2an+1-2-2an,
an+1=2an+2,
an+1+2=2(an+2),
{an+2}是首項為a1+2=4,公比為2的等比數(shù)列.
an+2=4•2n-1=2n+1,
an=2n+1-2.
(2)bn=
1
an+2
=
1
2n+1-2+2
=
1
2n+1

Tn=
1
4
+
1
8
+
1
16
+…+
1
2n+1

=
1
4
(1-
1
2n
)
1-
1
2

=
1
2
-
1
2n+1
,
lim
n→∞
Tn=
lim
n→∞
1
2
-
1
2n+1 
)=
1
2

(3)假設(shè)存在這樣3項,則有
ar+at=2as,r<s<t,
∴2r+1-2+2t+1-2=2(2s+1-2)
整理得到
2r+2t=2s+1,
兩邊同時除以2r,
1+2t-r=2(s-r+1),
等式左邊為奇數(shù)+偶數(shù),其結(jié)果必然為奇數(shù),
等式右邊為偶數(shù),故上述等式不能成立,
∴數(shù)列{an}中不存在三項ar,as,at(r<s<t)成等差數(shù)列.
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的極限值的求法,考查等差數(shù)列的判斷與求法,解題時要認真審題,注意等比數(shù)列和等差數(shù)列的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3
sin(
3
-
20π
3
)
tan
11π
3
-cos
13π
4
•tan(-
35π
4
π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對邊,且
cosB
cosC
=-
b
2a+c

(1)求角B的大;
(2)若b=
3
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=2,BC=1.5,∠ABC=120°(如圖),若將△ABC繞直線BC旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的體積是( 。
A、
2
B、
2
C、
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3sin(2x+
π
3
)的一條對稱軸方程為( 。
A、x=
π
2
B、x=
π
3
C、x=
π
6
D、x=
π
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是定義域D內(nèi)的某個區(qū)間I上的增函數(shù),且F(x)=
f(x)
x
在I上是減函數(shù),則稱y=f(x)是I上的“非完美增函數(shù)”,已知f(x)=lnx,g(x)=2x+
2
x
+alnx(a∈R)
(1)判斷f(x)在(0,1]上是否是“非完美增函數(shù)”;
(2)若g(x)是[1,+∞)上的“非完美增函數(shù)”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下面的數(shù)陣,第20行最左邊的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a2-c2+b2=-
3
ab,則角C=( 。
A、150°B、60°
C、30°D、45°或135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+
3
cosx)
(1)求f(x)的值域和最小正周期;
(2)若對任意x∈[0,
π
6
],使得m[f(x)+
3
]+2=0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案