【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是( )
A.
B.
C.
D.
【答案】A
【解析】解:因?yàn)?f(x+2)=f(x)﹣f(1),且f(x)是定義域?yàn)镽的偶函數(shù) 令x=﹣1 所以 f(﹣1+2)=f(﹣1)﹣f(1),f(﹣1)=f(1)
即 f(1)=0 則有,f(x+2)=f(x)
f(x)是周期為2的偶函數(shù),
當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2
圖象為開(kāi)口向下,頂點(diǎn)為(3,0)的拋物線
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),
∵f(x)≤0,
∴g(x)≤0,可得a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),
令g(x)=loga(|x|+1),
如圖要求g(2)>f(2),可得
就必須有 loga(2+1)>f(2)=﹣2,
∴可得loga3>﹣2,∴3< ,解得﹣ <a< 又a>0,
∴0<a< ,
故選A;
根據(jù)定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),可以令x=﹣1,求出f(1),再求出函數(shù)f(x)的周期為2,當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,畫出圖形,根據(jù)函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),利用數(shù)形結(jié)合的方法進(jìn)行求解;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時(shí),有 成立.
(1)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1對(duì)所有的a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,其公差為﹣2,且a7是a3與a9的等比中項(xiàng),Sn為{an}的前n項(xiàng)和,n∈N* , 則S10的值為( )
A.﹣110
B.﹣90
C.90
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)利用“五點(diǎn)法”畫出函數(shù) 在 內(nèi)的簡(jiǎn)圖
x | |||||
x+ | |||||
y |
(2)若對(duì)任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com