【題目】【選修4—4:坐標系與參數(shù)方程】

將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.

Ⅰ)寫出C的參數(shù)方程;

設直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

【答案】 得參數(shù)方程為 為參數(shù)) II

【解析】試題分析:(1)根據(jù)變換得,再利用三角換元得2)先求出直角坐標方程:由直線方程與橢圓方程解得交點坐標P12,0),P20,1),得中點坐標,利用點斜式得直線方程,最后根據(jù)得極坐標方程

試題解析:(I)設(x1,y1)為圓上的點,在已知變換下變?yōu)?/span>C上點(x,y),

依題意得:圓的參數(shù)方程為t為參數(shù))

所以C的參數(shù)方程為t為參數(shù)).

II)由解得

所以P12,0),P20,1),則線段P1P2的中點坐標為,所求直線的斜率k,于是所求直線方程為,并整理得

化為極坐標方程, ,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在調(diào)查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
其中 為樣本容量。

P(K2≥k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1)根據(jù)以上數(shù)據(jù)建立一個 的列聯(lián)表;
(2)試判斷是否有95%的把握認為是否暈機與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知海島A到海岸公路BC的距離AB=50km,B,C間的距離為100km,從A到C必須先坐船到BC上的某一點D,航速為25km/h,再乘汽車到C,車速為50km/h,記∠BDA=θ
(1)試將由A到C所用的時間t表示為θ的函數(shù)t(θ);
(2)問θ為多少時,由A到C所用的時間t最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且直線經(jīng)過曲線的左焦點

(1)求直線的普通方程;

(2)設曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上單調(diào)遞減,且f(﹣4)=0,則使得x|f(x)+f(﹣x)|<0的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有三個不同的極值點,求的值;

(2)若存在實數(shù),使對任意的,不等式恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信已成為人們常用的社交軟件,“微信運動”是微信里由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關(guān)注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:

步數(shù)

性別

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.

(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數(shù)超過10000步的概率;

(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結(jié)論:①y=1是冪函數(shù);
②定義在R上的奇函數(shù)y=f(x)滿足f(0)=0
③函數(shù) 是奇函數(shù)
④當a<0時,
⑤函數(shù)y=1的零點有2個;
其中正確結(jié)論的序號是(寫出所有正確結(jié)論的編號).

查看答案和解析>>

同步練習冊答案