如圖,正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2,
(Ⅰ)求證:AC∥平面BEF;
(Ⅱ)求二面角A-FD-B的正切值;
(Ⅲ)求點(diǎn)D到平面BEF的距離.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面平行的判定,點(diǎn)、線、面間的距離計(jì)算
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)設(shè)AC∩BD=O,取BE中點(diǎn)G,連接FG,OG,由已知條件推導(dǎo)出四邊形AFGO是平行四邊形,由此能夠證明AC∥平面BEF.
(Ⅱ)以D為原點(diǎn),以DA為x軸,以DC為y軸,以DE為z軸,建立空間直角坐標(biāo)系,求出平面BDF的法向量、平面ADF的法向量,利用向量的夾角公式,即可求二面角A-FD-B的正切值;
(Ⅲ)利用向量法能求出點(diǎn)D到平面BEF的距離.
解答: (Ⅰ)證明:設(shè)AC∩BD=O,取BE中點(diǎn)G,連接FG,OG,
∴OG∥DE,且OG=
1
2
DE.
∵AF∥DE,DE=2AF,
∴AF∥OG,且OG=AF,
∴四邊形AFGO是平行四邊形,F(xiàn)G∥OA.
∴FG?平面BEF,AO?平面BEF,
∴AO∥平面BEF,即AC∥平面BEF.
(2)解:∵正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,
∴以D為原點(diǎn),以DA為x軸,以DC為y軸,以DE為z軸,建立空間直角坐標(biāo)系,
∵DE=DA=2AF=2,
∴B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),D(0,0,0),
BF
=(0,-2,1),
BD
=(-2,-2,0),
設(shè)平面BDF的法向量
m
=(a,b,c),則
-2b+c=0
-2a-2b=0
,
m
=(-1,1,2),
∵平面ADF的法向量(0,1,0),
∴二面角A-FD-B的余弦值為
2
6
,∴正切值為
2
2
;
(3)解:設(shè)平面BEF的法向量
n
=(x,y,z),則
-2x-2y+2z=0
-2y+z=0
,
n
=(1,1,2),
∴點(diǎn)D到平面BEF的距離d=
|
BD
n
|
|
n
|
=
2
6
3
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查點(diǎn)到平面的距離的求法,考查平面與平面所成角的正切值的求法,解題時(shí)要注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

作出函數(shù)圖象y=|x-2|的圖象,并指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在幾何體ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACEF⊥平面ABCD,CF=1.
(Ⅰ)求證:平面FBC⊥平面ACFE;
(Ⅱ)若M為線段EF的中點(diǎn),設(shè)平面MAB與平面FCB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線F(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線F(x,y)=0的“自公切線”.下列方程:①x2-y2=1;②y=x2-2|x|;③y=sinx+cosx;④|x|+1=
2-y2
對(duì)應(yīng)的曲線中不存在“自公切線”的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)-cos(π+α)=
2
3
,(
π
2
<α<π),求下列各式的值:
(Ⅰ)sinα-cosα;
(Ⅱ)sin3
π
2
-α)-cos3
π
2
+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-x-3在x=-1時(shí)取得極值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,若集合A={x|3≤x≤10},B={x|x<2或x>7}.
(Ⅰ)求A∩B,A∪B,(∁UA)∩(∁UB);
(Ⅱ)若集合M={x|x+2a≥0},M∩A≠∅,求實(shí)數(shù)
3
8
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-2x(-2≤x≤a,其中a>-2),求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對(duì)應(yīng)的值變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x-
3
y=0被圓x2+y2-2x=0截得的弦長為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案