給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):

①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”;

②“若a,b,c,d∈R,則復數(shù)a+bi=c+di?a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b=c+d?a=c,b=d”;

③若“a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”.

其中類比結論正確的個數(shù)是(    )

A.0                B.1                C.2                D.3

 

【答案】

C

【解析】

試題分析:顯然①正確;②錯,舉例:;若a,b∈C,且a-b>0,說明a和b都是實數(shù),則a>b,③正確。故選C。

考點:命題的真假性。

點評:本題需要理解好實數(shù)與虛數(shù)的區(qū)別。另對于判斷命題正確與否,有時可以取特殊值代入。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集)
①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”;
②“若a,b,c,d∈R,則復數(shù)a+bi=c+di?a=c,b=d”,類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
?a=c,b=d
”;
③“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”;
④“若x∈R,則|x|<1?-1<x<1”類比推出“若x∈C,則|z|<1?-1<z<1
其中類比結論正確的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”類比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復數(shù)a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則復數(shù)b=d”
③“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,則a-b>0⇒a>b”
其中類比得到的結論正確的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下面類比推理命題:
①“若a•3=b•3,則a=b”類推出“若a•0=b•0,則a=b”;
②“若(a+b)c=ac+bc”類推出“
a+b
c
=
a
c
+
b
c
(c≠0)
”;
③“(ab)n=anbn”類推出“(a+b)n=an+bn”;
④“ax+y=ax•ay(0<a≠1)”類推出“l(fā)oga(x+y)=logax•logay(0<a≠1)”.
其中類比結論正確的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集),其中類比結論正確的是( 。
A、“若a,b∈R,則a2+b2=0⇒a=0且b=0”類比推出“若z1,z2∈C,則z12+z22=0⇒z1=0且z2=0”
B、“若a,b,c,d∈R,則復數(shù)a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
⇒a=c,b=d
C、“若a,b∈R,則a-b>0⇒a>b”類比推出“若z1,z2∈C,則z1-z2>0⇒z1>z2
D、“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“a、,b∈C,則a-b=0⇒a=b”
②“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”
③“若a、b、∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”
其中類比結論正確的個數(shù)有( 。

查看答案和解析>>

同步練習冊答案