計(jì)算下列定積分:
(1)
2
1
(x2+2x+3)dx

(2)
0
(cosx-ex)dx
(3)
2
1
2x2+x+1
x
dx.
考點(diǎn):定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:直接求出被積函數(shù)的原函數(shù),然后分別代入積分上限和積分下限后作差得答案.
解答: 解:(1)
2
1
(x2+2x+3)dx
=(
1
3
x3+x2+3x)
|
2
1
=(
1
3
×23+22+3×2)-(
1
3
×13+12+3×1)
=
25
3
;
(2)
0
(cosx-ex)dx=(sinx-ex)
|
0
=(sin0-e0)-[sin(-π)-e]
=
1
eπ
-1

(3)
2
1
2x2+x+1
x
dx
=∫
2
1
(2x+1+
1
x
)dx
=(x2+x+lnx)
|
2
1
=(22+2+ln2)-(12+1+ln1)=4+ln2.
點(diǎn)評(píng):本題考查了定積分,關(guān)鍵是求出被積函數(shù)的原函數(shù),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-3x2-3x+4b2+
1
4
(b>0),x∈[-b,1-b],f(x)max=25,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x2-3x+1,
1
2
<x≤1
-
2
3
x+
1
3
,0≤x≤
1
2
和函數(shù)g(x)=acos(
π
6
x+
π
3
)-a+1(a>0)
,若存在x1,x2∈[0,1]使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A、(0,1]
B、[1,2]
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且b=2,a=c,cosB=
7
8

(1)求a,c的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=|x|和圓x2+y2=4可圍成兩個(gè)面積不等得封閉圖形,其中較小的一個(gè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=10x-
1
10
+1,x∈R,函數(shù)y=f(x)是函數(shù)y=g(x)的反函數(shù),求函數(shù)y=f(x)的解析式,并寫出定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面α、β的法向量分別為
n1
=(2,-3,5),
n2
=(-3,1,-4),則( 。
A、α∥β
B、α⊥β
C、α、β相交但不垂直
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(
π
2
x+
π
6
)-2sin2
π
4
x,求函數(shù)f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩平行線l1,l2分別過(guò)點(diǎn)P1(1,0)、P2(0,5)
(1)若l1與l2的距離為5,求l1與l2的方程;
(2)設(shè)l1與l2之間距離為d,求d的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案