分析 設(shè)設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosθ,sinθ),利用三角恒等變換得出$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})$的最小值.
解答 解:∵$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}$,∴$\overrightarrow{a},\overrightarrow$的夾角為60°,
不妨設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(cosθ,sinθ),
則$\overrightarrow{c}-\overrightarrow{a}$=(cosθ-1,sinθ),$\overrightarrow{c}-\overrightarrow$=(cosθ-$\frac{1}{2}$,sinθ-$\frac{\sqrt{3}}{2}$),
∴$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})$=(cosθ-1)(cosθ-$\frac{1}{2}$)+sinθ(sinθ-$\frac{\sqrt{3}}{2}$)=cos2θ+sin2θ-$\frac{3}{2}$cosθ-$\frac{\sqrt{3}}{2}$sinθ+$\frac{1}{2}$=$\frac{3}{2}$-$\sqrt{3}$sin(θ+φ),
∴當(dāng)sin(θ+φ)=1時(shí),$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})$取得最小值$\frac{3}{2}$-$\sqrt{3}$.
故答案為:$\frac{3}{2}$-$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com