【題目】已知函數(shù), 為其導(dǎo)函數(shù).
(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;
(2) 若, 設(shè), 為函數(shù)圖象上不同的兩點,且滿足,設(shè)線段中點的橫坐標(biāo)為 證明: .
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍, 得增區(qū)間, 得減區(qū)間即可;(2)問題轉(zhuǎn)化為證明令 ,根據(jù)函數(shù)單調(diào)性證明即可.
試題解析:(1) ,
①時, 定義域為
上,故在上單調(diào)遞減;
上,故在上單調(diào)遞增.
②時, 定義域為
上,故在上單調(diào)遞增;
上,故在上單調(diào)遞減.
(2)
,故在定義域上單調(diào)遞增.
只需證: ,即證 (*)
注意到 不妨設(shè).
令,
則 ,從而在上單減,
故, 即得(*)式.
法二:(2) 故在定義域上單調(diào)遞增.
注意到且
設(shè),則單調(diào)遞增且圖象關(guān)于中心對稱.
構(gòu)造函數(shù),
,
當(dāng)時, , 單增;當(dāng)時, , 單減,
故,且等號僅在處取到. 所以與圖象關(guān)系如下:
取,則顯然有, 從而,
另外由三次函數(shù)的中心對稱性可知,則有 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖(如圖甲)和頻率分布直方圖(如圖乙)都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.(注:直方圖中與對應(yīng)的長方形的高度一樣)
(1)若按題中的分組情況進行分層抽樣,共抽取人,那么成績在之間應(yīng)抽取多少人?
(2)現(xiàn)從分數(shù)在之間的試卷中任取份分析學(xué)生失分情況,設(shè)抽取的試卷分數(shù)在之間 份數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(x+)n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)在上為減函數(shù),求的最小值;
(Ⅱ)若函數(shù)(, 為自然對數(shù)的底數(shù)),,對于任意的,恒有成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足(),人均消費(元)與時間(天)的函數(shù)關(guān)系近似滿足
(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;
(2)求該商場日收益的最小值(千元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生營養(yǎng)餐由A和B兩家配餐公司配送. 學(xué)校為了解學(xué)生對這兩家配餐公司的滿意度,采用問卷的形式,隨機抽取了40名學(xué)生對兩家公司分別評分. 根據(jù)收集的80份問卷的評分,得到A公司滿意度評分的頻率分布直方圖和B公司滿意度評分的頻數(shù)分布表:
(Ⅰ)根據(jù)A公司的頻率分布直方圖,估計該公司滿意度評分的中位數(shù);
(Ⅱ)從滿意度高于90分的問卷中隨機抽取兩份,求這兩份問卷都是給A公司評分的概率;
(Ⅲ)請從統(tǒng)計角度,對A、B兩家公司做出評價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com