【題目】已知函數(shù) .

(Ⅰ)若函數(shù)上為減函數(shù),求的最小值;

(Ⅱ)若函數(shù), 為自然對數(shù)的底數(shù)),,對于任意的,恒有成立,求的范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:(Ⅰ)先將函數(shù)單調(diào)遞減問題轉(zhuǎn)化為導函數(shù)非正恒成立問題,再根據(jù)一元二次不等式恒成立充要條件,轉(zhuǎn)化為對應(yīng)區(qū)間端點值非正,最后解不等式可得的取值范圍,進而確定的最小值;(Ⅱ)先將不等式恒成立問題轉(zhuǎn)化為對應(yīng)函數(shù)最值問題: ,利用導數(shù)可求得,轉(zhuǎn)化為不等式恒成立,易得.

試題解析:(Ⅰ)

所以上恒成立

所以上恒成立

,所以

所以 , , 的最小值為

(Ⅱ)

,則

化簡得,解得

所以

時, 單調(diào)遞增

時, 單調(diào)遞減

又因為,所以當時,

,即恒成立

因為,所以,所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某批零件共160其中一級品有48,二級品有64三級品有32,等外品有16個.從中抽取一個容量為20的樣本.試簡要敘述用簡單隨機抽樣、系統(tǒng)抽樣、分層抽樣法進行抽樣都是等可能抽樣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】調(diào)查在級風的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船

(1)作出性別與暈船關(guān)系的列聯(lián)表;

(2)根據(jù)此資料,能否在犯錯誤的概率不超過0.1的前提下認為級風的海上航行中暈船與性別有關(guān)?

暈船

不暈船

總計

男人

女人

總計

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學分別給出了下列三個結(jié)果:①;②26-7;③,其中正確的結(jié)論是( 。

A. 僅有① B. 僅有② C. ②與③ D. 僅有③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為其導函數(shù).

(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;

(2) 若, 設(shè) 為函數(shù)圖象上不同的兩點,且滿足,設(shè)線段中點的橫坐標為 證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)實數(shù),整數(shù),

(1)證明:當時,

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)若的圖象與的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.

(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?

(2)每名學生都被隨機分配到其中的一個公園,設(shè)分別表示5名學生分配到王城公園和牡丹公園的人數(shù),記,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線相交于兩點,點關(guān)于軸的對稱點為.

(Ⅰ)證明:點在直線上;

(Ⅱ)設(shè),求的內(nèi)切圓的方程.

查看答案和解析>>

同步練習冊答案