【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的坐標(biāo)為,直線與曲線交于兩點(diǎn),求的值.

【答案】(1) , (2)8

【解析】試題分析:(1)消去參數(shù),得直線的普通方程,兩邊同乘,即;

(2)直線的參數(shù)方程的標(biāo)準(zhǔn)形式為為參數(shù))與曲線聯(lián)立得:,設(shè),所對(duì)應(yīng)參數(shù)分別為,,則利用韋達(dá)定理即可得解.

試題解析:

(1)由為參數(shù))消去參數(shù),得直線的普通方程為,

,兩邊同乘,即,

故曲線的直角坐標(biāo)方程為

(2)在為參數(shù))中,令

得直線的參數(shù)方程的標(biāo)準(zhǔn)形式為為參數(shù)),

代入曲線,整理得:,

設(shè),所對(duì)應(yīng)參數(shù)分別為,,則,,

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線AMBM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是,則點(diǎn)M的軌跡C的方程是___________.若點(diǎn)為軌跡C的焦點(diǎn),是直線上的一點(diǎn),是直線與軌跡的一個(gè)交點(diǎn),且,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,若以為左右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).

(1)求的標(biāo)準(zhǔn)方程

(2)設(shè)過(guò)右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值若存在,試求出定值和點(diǎn)的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)且與圓相切的動(dòng)圓圓心為.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線交曲線兩點(diǎn),過(guò)點(diǎn)的直線交曲線兩點(diǎn),且,垂足為,,為不同的四個(gè)點(diǎn)).

①設(shè),證明:;

②求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)當(dāng)求函數(shù)上的最大值和最小值;

(3)若對(duì)于任意的實(shí)數(shù)恒有求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線與曲線的極坐標(biāo)方程;

(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點(diǎn)為線段的中點(diǎn),且平面

(1)求證:平面平面

(2)若直線所成角的正切值為,設(shè),求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案