已知矩形是圓柱體的軸截面,分別是下底面圓和上底面圓的圓心,母線長(zhǎng)與底面圓的直徑長(zhǎng)之比為,且該圓柱體的體積為,如圖所示.
(1)求圓柱體的側(cè)面積的值;
(2)若是半圓弧的中點(diǎn),點(diǎn)在半徑上,且,異面直線與所成的角為,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖2,四邊形為矩形,平面,,,作如圖3折疊,折痕.其中點(diǎn)、分別在線段、上,沿折疊后點(diǎn)在線段上的點(diǎn)記為,并且.
(1)證明:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E,F(xiàn)分別為棱AC,AD的中點(diǎn).
(1)求證:DC平面ABC;
(2)設(shè),求三棱錐A-BFE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與、分別相切于點(diǎn)、,與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.
(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱中, , ,是的中點(diǎn),△是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,半徑與母線所成的角的大小等于.
(1)求圓錐的側(cè)面積和體積.
(2)求異面直線與所成的角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點(diǎn),是棱的中點(diǎn),.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,點(diǎn)M,N分別為
A′B和B′C′的中點(diǎn).
(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖如圖所示.
(1)畫出該三棱錐的直觀圖.
(2)求出側(cè)視圖的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com