如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點(diǎn),是棱的中點(diǎn),.
(1)求證:平面;
(2)求三棱錐的體積.
(1)見(jiàn)解析(2)
解析試題分析:(1)由題意知四邊形BCDE為平行四邊形,故連結(jié)CE交BD于O,知O是EC的中點(diǎn),又M是PC的中點(diǎn),根據(jù)中位線定理知MO∥PE,根據(jù)線面平行判定定理可得PE∥面BDM;(2)三棱錐P-MBD就是三棱錐P-BCD割去一個(gè)三棱錐M-BCD,故三棱錐P-MBD體積就是三棱錐P-BCD體積減去一個(gè)三棱錐M-BCD的體積,由PA=PD=AD=2及為的中點(diǎn)知,PE垂直AD,由面面垂直的性質(zhì)定理知PE⊥面ABCD,故PE是三棱錐P-BCD的高,由M是PC的中點(diǎn)知三棱錐M-BCD的高為PE的一半,故三棱錐P-MBD體積為三棱錐P-BCD體積的一半,易求出三棱錐P-BCD即可求出三棱錐P-MBD體積.
試題解析:
(1)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/8/ktvpo1.png" style="vertical-align:middle;" />,,所以四邊形為平行四邊形,
連接交于,連接,則,
又平面,平面,所以平面.
(2),
由于平面底面,底面
所以是三棱錐的高,且
由(1)知是三棱錐的高,,,
所以,則.
考點(diǎn):1.線面平行的判定;2.簡(jiǎn)單幾何體體積計(jì)算;3.邏輯推理能力;4.空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,底面是邊長(zhǎng)為2的菱形,且,以與為底面分別作相同的正三棱錐與,且.
(1)求證:平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知矩形是圓柱體的軸截面,分別是下底面圓和上底面圓的圓心,母線長(zhǎng)與底面圓的直徑長(zhǎng)之比為,且該圓柱體的體積為,如圖所示.
(1)求圓柱體的側(cè)面積的值;
(2)若是半圓弧的中點(diǎn),點(diǎn)在半徑上,且,異面直線與所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,垂直于矩形所在平面,,.
(1)求證:;
(2)若矩形的一個(gè)邊,,則另一邊的長(zhǎng)為何值時(shí),三棱錐的體積為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,∠A=30。,斜邊AC上的中線BD=2,現(xiàn)沿BD將△BCD折起成三棱錐C-ABD,已知G是線段BD的中點(diǎn),E,F(xiàn)分別是CG,AG的中點(diǎn).
(1)求證:EF//平面ABC;
(2)三棱錐C—ABD中,若棱AC=,求三棱錐A一BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐,底面是等腰梯形,且∥,是中點(diǎn),平面,, 是中點(diǎn).
(1)證明:平面平面;(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,為圓的直徑,點(diǎn).在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.
(1)設(shè)的中點(diǎn)為,求證:平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在斜二測(cè)畫(huà)法下,四邊形A′B′C′D′是下底角為45°的等腰梯形,其下底長(zhǎng)為5,一腰長(zhǎng)為,則原四邊形的面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com