已知log54=a,log53=b,用a,b表示log2536=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用對數(shù)的運算性質(zhì)和運算法則求解.
解答: 解:∵log54=a,log53=b,
∴l(xiāng)og2536=log56=log52+log53
=
1
2
log54
+log53
=
1
2
a+b

故答案為:
1
2
a
+b.
點評:本題考查對數(shù)的化簡、運算,是基礎題,解題時要注意對數(shù)的運算性質(zhì)和運算法則的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設α,β為兩個不重合的平面,m,n是兩條不重合的直線,給出下列四個判斷:
①若m⊥n,m⊥α,則n∥α;          
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直;
③若m∥n,n⊥α,α∥β,則m⊥β;    
④若α⊥β,α∩β=m,m⊥n,則n⊥β.
其中所有錯誤的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面向量
a
b
滿足|
a
|=1,|
b
|=
2
,(
a
-
b
)•
a
=0,則
a
b
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ω=-
1
2
+
3
2
i,則行列式
.
1ω ω2
ω21ω
ωω21
.
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=1,an=
an-1
1+an-1
,則該數(shù)列的第5項等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①設
a
,
b
是兩個非零向量,若|
a
+
b
|=|
a
-
b
|,則
a
b
=0
②若非零向量
a
b
,
c
,
d
滿足
d
=(
a
c
b
-(
a
b
c
,則
a
d

③在△ABC中,若acosA=bcosB,則△ABC是等腰三角形
④在△ABC中,∠A=60°,邊長a,c分別為a=4,c=3
3
,則△ABC只有一解.
上面說法中正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
-x2-2x+3,x≤0
|2-lnx|,x>0
,直線y=m與函數(shù)f(x)的圖象相交于四個不同的點,從小到大,交點橫坐標依次記為a,b,c,d,下列說法錯誤的是(  )
A、m∈[3,4)
B、abcd∈[0,e4
C、a+b+c+d∈[e5+
1
e
-2,e6+
1
e2
-2)
D、若關(guān)于x的方程f(x)+x=m恰有三個不同實根,則m取值唯一

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2+x+1>0,命題q:?x∈Q,x2=3,則下列命題中是真命題的是( 。
A、p∧qB、¬p∨q
C、¬p∧¬qD、¬p∨¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要得到y(tǒng)=cos(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象( 。
A、向左平移
π
2
B、向左平移
π
4
C、向右平移
π
2
D、向右平移
π
4

查看答案和解析>>

同步練習冊答案