一艘海輪從A處出發(fā),以每小時40n mile的速度沿東偏南50°方向直線航行,30min后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是東偏南20°,在B處觀察燈塔,其方向是北偏東65°,那么B、C兩點間的距離是( 。
A、10
2
n mile
B、10
3
n mile
C、20
2
n mile
D、20
3
n mile
考點:解三角形的實際應用
專題:計算題,解三角形
分析:先根據(jù)題意畫出圖象確定∠BAC、∠ABC的值,進而可得到∠ACB的值,最后根據(jù)正弦定理可得到BC的值.
解答: 解:如圖,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,
從而∠ACB=45°.
在△ABC中,由正弦定理可得BC=
AB
sin45°
×sin30°
=10
2

故選:A
點評:本題考查解三角形的實際應用,考查學生的計算能力,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題p:“對任意x∈(0,1),
1
2
x2
-lnx-a≥0”,命題q:“存在x∈R,x2+2ax-8-6a=0”,若“p且q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α為第四象限的角,若
sin3α
sinα
=
13
5
,則tanα=(  )
A、-
1
3
B、-
2
3
C、-
6
2
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設[x]表示不超過x的最大整數(shù)(如[2]=2,[
3
2
]=1
).對于給定的n∈N*,定義Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當x∈[
5
4
,3)
時,函數(shù)f(x)=C8x的值域為( 。
A、(4,
32
5
]
B、(4,
32
5
]∪(
28
3
,28]
C、[4,
32
5
)∪(
28
3
,28]
D、[
28
3
,28]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
8
+y2
=1的左、右焦點分別為F1、F2,點P在橢圓上,則|PF1|•|PF2|的最大值是( 。
A、8
B、2
2
C、10
D、4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=cosx+2xf′(
π
6
),則f(x)在點(0,f(0))處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人在塔的正東沿著南偏西60°的方向前進40米后,望見塔在東北方向,若沿途測得塔頂?shù)淖畲笱鼋菫?0°,則塔高為
 
米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
-x2+2x
的單調(diào)增區(qū)間是( 。
A、[0,1]
B、(-∞,1]
C、[1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出命題“若x2+y2=0,則xy=0”的逆命題、否命題、逆否命題,并判斷其真假.

查看答案和解析>>

同步練習冊答案