【題目】某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機(jī)抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個(gè)人被抽到的概率都是

其中說(shuō)法正確的為( )

A.①②③B.②③C.②③④D.③④

【答案】A

【解析】

①該抽樣可以是系統(tǒng)抽樣;②因?yàn)榭傮w個(gè)數(shù)不多,容易對(duì)每個(gè)個(gè)體進(jìn)行編號(hào),因此該抽樣可能是簡(jiǎn)單的隨機(jī)抽樣;③若總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,且分層抽樣的比例相同,該抽樣不可能是分層抽樣;④分別求出男生和女生的概率,故可判斷出真假.

①總體容量為30,樣本容量為5,第一步對(duì)30個(gè)個(gè)體進(jìn)行編號(hào),如男生1~20,女生21~30;

第二步確定分段間隔;第三步在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào);

第四步將編號(hào)為依次抽取,即可獲得整個(gè)樣本.故該抽樣可以是系統(tǒng)抽樣.因此①正確.

②因?yàn)榭傮w個(gè)數(shù)不多,可以對(duì)每個(gè)個(gè)體進(jìn)行編號(hào),因此該抽樣可能是簡(jiǎn)單的隨機(jī)抽樣,故②正確;

③若總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,且分層抽樣的比例相同,

但興趣小組有男生20人,女生10人,抽取2男3女,抽的比例不同,故③正確;

④該抽樣男生被抽到的概率;女生被抽到的概率,故前者小于后者.因此④不正確.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)試判斷函數(shù)上的單調(diào)性,并說(shuō)明理由;

2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在,.

(1)求角的大小;

(2)設(shè)數(shù)列滿足,項(xiàng)和為,,的值.

【答案】(1);(2).

【解析】試題分析:

(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,.

(2)結(jié)合(1)中的結(jié)論可得 . ,據(jù)此可得關(guān)于實(shí)數(shù)k的方程,解方程可得,.

試題解析:

(1)由已知,又,所以.又由,

所以,所以,

所以為直角三角形,,.

(2) .

所以 ,,得

,所以,所以,所以.

型】解答
結(jié)束】
18

【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn)如果,.(1)求證:是平面的法向量

(2)求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在高二年級(jí)學(xué)生中,對(duì)自然科學(xué)類、社會(huì)科學(xué)類校本選修課程的選課意向進(jìn)行調(diào)查.現(xiàn)從高二年級(jí)學(xué)生中隨機(jī)抽取180名學(xué)生,其中男生105名;在這180名學(xué)生中選擇社會(huì)科學(xué)類的男生、女生均為45.

(1)根據(jù)抽取的180名學(xué)生的調(diào)查結(jié)果,完成下面的2×2列聯(lián)表.

(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為科類的選擇與性別有關(guān)?

選擇自然科學(xué)類

選擇社會(huì)科學(xué)類

合計(jì)

男生

女生

合計(jì)

參考公式:,其中.

P(K2k0)

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和橢圓. 直線與橢圓交于不同的兩點(diǎn).

(Ⅰ) 求橢圓的離心率;

(Ⅱ) 當(dāng)時(shí),求的面積;

(Ⅲ)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)中點(diǎn)時(shí),求的值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面,,,,外接球的球心為,點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:①直線與直線是異面直線;②一定不垂直于; ③三棱錐的體積為定值;④的最小值為.其中正確的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評(píng)價(jià)空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對(duì)應(yīng)如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( 。

A. 整體上看,這個(gè)月的空氣質(zhì)量越來(lái)越差

B. 整體上看,前半月的空氣質(zhì)量好于后半個(gè)月的空氣質(zhì)量

C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差

D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

同步練習(xí)冊(cè)答案