【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當時,求的面積;
(Ⅲ)設(shè)直線與橢圓的另一個交點為,當為中點時,求的值 .
【答案】(Ⅰ)(Ⅱ)4(Ⅲ)
【解析】
(Ⅰ)利用已知條件求出a,c,然后求解橢圓的離心率即可;
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),直線l的方程為,與橢圓聯(lián)立,求出坐標,然后求解三角形的面積;
(Ⅲ)法一:設(shè)點C(x3,y3),P(x1,y1),B(0,﹣2),結(jié)合橢圓方程求出P(x1,y1),然后求解斜率.
法二:設(shè)C(x3,y3),顯然直線PB有斜率,設(shè)直線PB的方程為y=k1x﹣2,與橢圓聯(lián)立,利用韋達定理求出P的坐標,求解斜率即可.
(Ⅰ)因為,所以
所以離心率
(Ⅱ)設(shè)
若,則直線的方程為
由,得
解得
設(shè),則
(Ⅲ)法一:
設(shè)點,
因為,,所以
又點,都在橢圓上,
所以
解得或
所以 或
法二:
設(shè)
顯然直線有斜率,設(shè)直線的方程為
由, 得
所以
又
解得 或
所以 或
所以或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2,AB=1.
(Ⅰ)求四棱錐P﹣ABCD的體積V;
(Ⅱ)若F為PC的中點,求證:平面PAC⊥平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足.
(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年冬奧會,北京市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核. 記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機抽取了名學(xué)生的考核成績,并作成如下莖葉圖:
5 | 0 | 1 | 1 | 6 | ||||
6 | 0 | 1 | 4 | 3 | 3 | 5 | 8 | |
7 | 2 | 3 | 7 | 6 | 8 | 7 | 1 | 7 |
8 | 1 | 1 | 4 | 5 | 2 | 9 | ||
9 | 0 | 2 | 1 | 3 | 0 |
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核成績?yōu)閮?yōu)秀的概率;
(Ⅱ)從圖中考核成績滿足的學(xué)生中任取人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記表示學(xué)生的考核成績在區(qū)間內(nèi)的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當時培訓(xùn)有效. 請你根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法:
①回歸直線可以不過樣本的中心點;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;
③在回歸直線方程中,當解釋變量x每增加一個單位時,預(yù)報變量平均增加0.2個單位;
④對分類變量X與Y,若它們的隨機變量的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是( )
A.①④B.②③C.①③D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月23日,在省市舉辦的2019年中國農(nóng)民豐收節(jié)“新電商與農(nóng)業(yè)科技創(chuàng)新”論壇上,來自政府相關(guān)部門的領(lǐng)導(dǎo)及11所中國高校的專家學(xué)者以“農(nóng)業(yè)科技創(chuàng)新與鄉(xiāng)村振興”、“新農(nóng)人與脫貧攻堅”為核心議題各抒己見,農(nóng)產(chǎn)品方面的科技創(chuàng)新越來越成為21世紀大國崛起的一項重大突破.科學(xué)家對某農(nóng)產(chǎn)品每日平均增重量(單位:)與每日營養(yǎng)液注射量(單位:)之間的關(guān)系統(tǒng)計出表1一組數(shù)據(jù):
表1
(單位:) | 1 | 2 | 3 | 4 | 5 |
(單位:) | 2 | 3.5 | 5 | 6.6 | 8.4 |
(1)根據(jù)表1和表2的相關(guān)統(tǒng)計值求關(guān)于的線性回歸方程;
(2)計算擬合指數(shù)的值,并說明線性回歸模型的擬合效果(的值在.98以上說明擬合程度好);
(3)若某日該農(nóng)產(chǎn)品的營養(yǎng)液注釋量為,預(yù)測該日這種農(nóng)產(chǎn)品的平均增長重量(結(jié)果精確到0.1).
附:①
表2
92.4 | 55 | 25 | 0.04 |
②對于一組數(shù)據(jù),,…,,其回歸線的斜率和截距的最小二乘估計分別為:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com