已知函數(shù)f(x)= m·log2x + t的圖象經(jīng)過點(diǎn)A(4,1)、點(diǎn)B(16,3)及點(diǎn)C(Sn,n),其中Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*.
(Ⅰ)求Sn和an;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.
(Ⅰ),(Ⅱ)不等式的解集為{1, 2,3 }
解析試題分析:由 20070129
所以f(x)= log2x – 1 .由條件得: n = log2Sn – 1 .
得: ,
,
,
所以 .
(2) , 不等式成立.
bn = f(an) – 1= n – 2 ,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意滿足,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}的前n項(xiàng)和為,,.
(1)設(shè),證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的公差,等比數(shù)列公比為,且,,
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得和都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是數(shù)列的前項(xiàng)和,且對(duì)任意,有,
求的通項(xiàng)公式;
求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足(),則是否存在這樣的實(shí)數(shù)使得為等比數(shù)列;
(3)數(shù)列滿足為數(shù)列的前n項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足,若數(shù)列滿足:,且當(dāng) 時(shí),
(I) 求及 ;
(II)證明:,(注:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足,(),是常數(shù).
(Ⅰ)當(dāng)時(shí),求及的值;
(Ⅱ)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列具有性質(zhì):①為整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),
;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(且N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com