【題目】已知函數(shù) ,

有零點(diǎn) m 的取值范圍;

確定 m 的取值范圍使得有兩個(gè)相異實(shí)根.

【答案】(1) ;(2) ;

【解析】

(1) x>0時(shí)有根,再對(duì) (2)記,證明h(x)(0,e)上單調(diào)遞減,(e,+∞)上單調(diào)遞增,根據(jù)零點(diǎn)定理h(e)<0,解得,再證明在(e,+∞)上只有一個(gè)零點(diǎn),在(0,e)上只有一個(gè)零點(diǎn),綜上即可得解.

(1) x>0有根,當(dāng)時(shí)則m≤-2e(),當(dāng)時(shí),f(0)=e2,f(0)≤0無(wú)解,m≥2e.

(2),

則可以證明h(x)(0,e)上單調(diào)遞減,(e,+∞)上單調(diào)遞增,證明如下:

任取,, 由于, , 所以,所以函數(shù)在(0,e)上單調(diào)遞減;同理可證得在(e,+∞)上單調(diào)遞增,

所以h(e)為函數(shù)最小值,根據(jù)零點(diǎn)定理h(e)<0,解得,

以下說(shuō)明必存在函數(shù)值大于零:

首先說(shuō)明(e,+∞),當(dāng)m≥2e時(shí), ,當(dāng)時(shí), ;所以在(e,+∞)上只有一個(gè)零點(diǎn)。

再說(shuō)明(0,e), ,所以取即中中較小值,當(dāng)時(shí), ;當(dāng)時(shí), ;所以在(0,e)上只有一個(gè)零點(diǎn)

綜上, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.

(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?

(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a(1≤a≤4)個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè),,為常數(shù)).

(1)求的最小值及相應(yīng)的的值;

(2)設(shè),若,求的取值范圍;

(3)若對(duì)任意,以、為三邊長(zhǎng)總能構(gòu)成三角形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列個(gè)結(jié)論:

①棱長(zhǎng)均相等的棱錐一定不是六棱錐;

②函數(shù)既不是奇函數(shù)又不是偶函數(shù);

③若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是;

④若函數(shù)滿足條件,則的最小值為

其中正確的結(jié)論的序號(hào)是:______. (寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1F2,|F1F2|2,點(diǎn)在橢圓C上.

(1)求橢圓C的方程;

(2)過(guò)F1的直線l與橢圓C相交于A、B兩點(diǎn),且△AF2B的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},a1=1,且an1﹣an1an﹣an=0(n≥2,n∈N*),記bn=a2n1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 則滿足不等式Tn 成立的最大正整數(shù)n為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側(cè)面SAD是邊長(zhǎng)為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.

(1)求點(diǎn)S到平面ABCD的距離;
(2)若E為SC的中點(diǎn),求二面角A﹣DE﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行隨機(jī)抽樣檢測(cè)已知從三個(gè)地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測(cè)人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機(jī)抽取6件樣品進(jìn)行檢測(cè).

1)求這6件樣品中,來(lái)自各地區(qū)商品的數(shù)量

2)若在這6件樣品中隨機(jī)抽取2件送往另一機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件樣品來(lái)自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),直線l的參數(shù)方程為 (t為參數(shù)),l與C分別交于M,N,P(﹣2,﹣4).
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案