設(shè)函數(shù),.
(1)若曲線在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù)、的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求函數(shù)在區(qū)間上的最小值.
(1);(2);(3).

試題分析:(1)從條件“曲線在它們的交點(diǎn)處有相同的切線”得到以及,從而列有關(guān)、的二元方程組,從而求出的值;(2)將代入函數(shù)的解析式,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,確定函數(shù)在區(qū)間上是單峰函數(shù)后,然后對(duì)函數(shù)的端點(diǎn)值與峰值進(jìn)行限制,列不等式組解出的取值范圍;(3)將代入函數(shù)的解析式,并求出函數(shù)的單調(diào)區(qū)間,對(duì)函數(shù)的極值點(diǎn)是否在區(qū)間內(nèi)進(jìn)行分類討論,結(jié)合函數(shù)的單調(diào)性確定函數(shù)在區(qū)間上的最小值.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031420391839.png" style="vertical-align:middle;" />,,所以,.
因?yàn)榍在它們的交點(diǎn)處有相同切線,
所以,且,
,且,解得;
(2)當(dāng)時(shí),
所以,
,解得,,
當(dāng)變化時(shí),、的變化情況如下表:














極大值

極小值

所以函數(shù)的單調(diào)遞增區(qū)間為、,單調(diào)遞減區(qū)間為.
在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.
從而函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),當(dāng)且僅當(dāng) ,
,解得.
所以實(shí)數(shù)的取值范圍是.
(3)當(dāng),時(shí),
所以函數(shù)的單調(diào)遞增區(qū)間為、,單調(diào)遞減區(qū)間為
由于,,所以
①當(dāng),即時(shí), ;
②當(dāng)時(shí),;
③當(dāng)時(shí),在區(qū)間上單調(diào)遞增,
綜上可知,函數(shù)在區(qū)間上的最小值為
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(2)求證: 當(dāng)時(shí),有;
(3)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),

(Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點(diǎn),過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N,證明:C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不可能平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在實(shí)數(shù)集R上定義運(yùn)算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,在的曲線上是否存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)),其中
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若上恒成立,求實(shí)數(shù)的取值范圍;
(III)過(guò)點(diǎn)作函數(shù)圖像的切線,求切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的值域?yàn)?u>     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn),是函數(shù)圖象上不同于的一點(diǎn).有如下結(jié)論:
①存在點(diǎn)使得是等腰三角形;
②存在點(diǎn)使得是銳角三角形;
③存在點(diǎn)使得是直角三角形.
其中,正確的結(jié)論的個(gè)數(shù)為(    )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案