精英家教網 > 高中數學 > 題目詳情

【題目】公元263年左右,我國數學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( 。▍⒖紨祿簊in15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

【答案】B

【解析】

列出循環(huán)過程中S與n的數值,滿足判斷框的條件,即可結束循環(huán),得到答案.

模擬執(zhí)行程序,可得:n=6,S=3sin60°=,

不滿足條件S3.10,n=12,S=6×sin30°=3,

不滿足條件S3.10,n=24,S=12×sin15°=12×0.2588=3.1056,

滿足條件S3.10,退出循環(huán),輸出n的值為24.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數,有下列命題:①當時,是增函數;當時,是減函數;②其圖象關于軸對稱;③無最大值,也無最小值;④在區(qū)間上是增函數;⑤的最小值是。其中所有不正確命題的序號是________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,側面底面為等腰直角三角形,為 直角梯形,.

(1)若的中點,上一點滿足,求證:平面

(2)若,求四棱錐的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了引導居民合理用水,某市決定全面實施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機抽取了10戶家庭,統(tǒng)計了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數的分布列與數學期望;

(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,

(1)證明:;

(2)已知四邊形ABCD是等腰梯形,且求五面體ABCDEF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,若直線ABa成角為60,則ABb成角為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xy中,曲線C的參數方程為為參數),在以為極點,軸的非負半軸為極軸的極坐標系中,直線的極坐標方程為。

1)求曲線C的極坐標方程;

(2)設直線與曲線C相交于A,B兩點,P為曲C上的一動點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,若時均有,則______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內部卻是有規(guī)律可尋的.一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關數列的四個命題:

①數列是等比數列;

②數列是遞增數列;

③存在最小的正數,使得對任意的正整數 ,都有

④存在最大的正數,使得對任意的正整數,都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

同步練習冊答案